Although clinical efficacy of waggle needling has been confirmed, therapeutic mechanisms still remain poorly understood. Reduction of GABA was involved in the etiology of spasticity. Recently, accumulated evidences suggest that the inhibitory effect of GABA is determined by low intracellular chloride concentration, which is predominantly mediated by KCC2. This study was designed to investigate whether KCC2-GABA pathway was involved in the mechanism underlying acupuncture intervention in rats with middle cerebral artery occlusion (MCAO). Three days after modeling, the rats received waggle needling, routine needling and placebo needling for 7 consecutive days. After treatment, the muscle spasticity, motor function and infarct volumes were tested. KCC2 and GABAγ2 levels were detected via western blotting, RT-PCR and immunofluorescence. KCC2 antagonist and agonist were administered after the last intervention. We found that acupuncture, particularly waggle needling, could remarkably alleviate muscle spasticity, reverse motor deficits and reduce cerebral infraction in MCAO rats, possibly due to its effects on up-regulating expressions of KCC2 and GABAγ2 in the cortical infarct regions. However, the effects were blocked by KCC2 antagonist. In summary, this study suggests that improvements in muscle spasticity and motor function induced by waggle needling correlates with the activation of KCC2-GABA pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2021.135810DOI Listing

Publication Analysis

Top Keywords

waggle needling
20
kcc2-gaba pathway
12
muscle spasticity
12
induced waggle
8
needling correlates
8
spasticity motor
8
motor function
8
kcc2 gabaγ2
8
kcc2 antagonist
8
needling
7

Similar Publications

Objective: To evaluate the therapeutic efficacy and the influence on cerebral blood supply of waggle needling Yanglingquan (GB34) on spastic paresis (SP) rats after middle cerebral artery occlusion (MCAO) induced and investigate its mechanism of relieving neurobehavior deficiency.

Methods: SP rat model was produced by permanent MCAO. Rats were divided into five groups: blank control group (Control), sham operation group (Sham), model group (Model), waggle needling group (WN) and perpendicular needling group (PN).

View Article and Find Full Text PDF

Background: Increasing data show that structural changes of spastic muscle and hyperexcitability of reticulospinal tract (RST) are involved in the pathogenesis of spasticity after stroke (SAS). Our previous study has indicated that the anti-spastic effect of acupuncture, especially waggle needling (WN, a multiple directional needling method with joint movement), on SAS rats was related to the KCC2-GABAA pathway in cerebral cortex. Furthermore, as a peripheral stimulation to treat upper motor neuron injury-related spasticity, acupuncture's effect on peripheral spastic muscles and inhibitory neurotransmitters in the brainstem, the origin of the RST, should be further clarified.

View Article and Find Full Text PDF

Although clinical efficacy of waggle needling has been confirmed, therapeutic mechanisms still remain poorly understood. Reduction of GABA was involved in the etiology of spasticity. Recently, accumulated evidences suggest that the inhibitory effect of GABA is determined by low intracellular chloride concentration, which is predominantly mediated by KCC2.

View Article and Find Full Text PDF

Waggle needling, a classical anti-spastic needling technique characterized by combination of acupuncture with joint movement, has gained increasing popularity of spasticity treatment in China. This study was designed to compare the anti-spastic effect of waggle needling to the routine needling and to explore its underlying mechanism. We established post-stroke spasticity model based on ischemia stroke operation (middle cerebral artery occlusion).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!