Ethnopharmacological Relevance: Sargassum horneri (Turner) C. Agardh is well known in East Asia as an edible brown alga rich in bioactive compounds. It has an ethnopharmacological significance in traditional Chinese medicine to treat inflammatory disorders varying from edema, furuncles, dysuria to cardiovascular diseases.
Aim Of The Study: Surge of fine dust (FD), in densely populated areas, have been reported to cause adverse health conditions ranging from respiratory diseases to inflammatory skin disorders. The current study investigates the protective effects of an ethanol extract from S. horneri (SHE) on FD-induced inflammatory responses and impaired skin hydration in HaCaT keratinocytes.
Materials And Methods: Intracellular reactive oxygen species (ROS) generation was evaluated with the 2',7'-Dichlorofluorescin diacetate (DCFH-DA) stain. Anti-inflammatory properties of SHE in FD-stimulated HaCaT keratinocytes were investigated for the suppression of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) pathways and downregulation of pro-inflammatory cytokines. As a means of studying FD-induced skin barrier disruption and the effects of SHE on stratum corneum hydration-controlling factors, tight junction regulatory mediators, and hyaluronic acid (HA) production were evaluated using keratinocytes.
Results: SHE suppressed the intracellular ROS production, simultaneously improving cell viability in FD-stimulated keratinocytes. Also, SHE upregulated anti-inflammatory cytokine interleukin (IL)-4 while downregulating inflammatory cytokines IL-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α; epidermal and epithelial cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP); thymus and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC) and regulated upon activation, normally T-expressed, and presumably secreted expression and suppressed (RANTES) chemokine, MAPK and NF-κB mediators in a dose-dependent manner. Furthermore, SHE ameliorated filaggrin, involucrin, lymphoepithelial Kazal-type-related inhibitor (LEKTI), signifying its beneficial effects on deteriorated skin hydration caused by FD-induced inflammation. SHE further exhibited its skin protective effects regulating the tight junction proteins; Occludin, zonula occludens (ZO)-1, claudin-1, claudin-4, claudin-7, and claudin-23 while increasing the production of HA minimizing skin damage.
Conclusions: Anti-inflammatory effects of, SHE against FD-induced keratinocyte inflammation is attributable to the suppression of upstream MAPK and NF-κB mediators. SHE indicated potential anti-inflammatory properties attenuating deteriorated skin barrier function in HaCaT keratinocytes. The effects are attributable to the polyphenols and other antioxidant compounds in SHE. Further studies could envisage the use of SHE for developing rejuvenating cosmetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2021.114003 | DOI Listing |
Adv Skin Wound Care
January 2025
At the Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States, Adrian Chen, BS, Aleksandra Qilleri, BS, and Timothy Foster, BS, are Medical Students. Amit S. Rao, MD, is Project Manager, Department of Surgery, Wound Care Division, Northwell Wound Healing Center and Hyperbarics, Northwell Health, Hempstead. Sandeep Gopalakrishnan, PhD, MAPWCA, is Associate Professor and Director, Wound Healing and Tissue Repair Analytics Laboratory, School of Nursing, College of Health Professions, University of Wisconsin-Milwaukee. Jeffrey Niezgoda, MD, MAPWCA, is Founder and President Emeritus, AZH Wound Care and Hyperbaric Oxygen Therapy Center, Milwaukee, and President and Chief Medical Officer, WebCME, Greendale, Wisconsin. Alisha Oropallo, MD, is Professor of Surgery, Donald and Barbara Zucker School of Medicine and The Feinstein Institutes for Medical Research, Manhasset New York; Director, Comprehensive Wound Healing Center, Northwell Health; and Program Director, Wound and Burn Fellowship program, Northwell Health.
Generative artificial intelligence (AI) models are a new technological development with vast research use cases among medical subspecialties. These powerful large language models offer a wide range of possibilities in wound care, from personalized patient support to optimized treatment plans and improved scientific writing. They can also assist in efficiently navigating the literature and selecting and summarizing articles, enabling researchers to focus on impactful studies relevant to wound care management and enhancing response quality through prompt-learning iterations.
View Article and Find Full Text PDFSmall
January 2025
Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, P. R. China.
Topical transdermal drug delivery for psoriasis remains a challenge because of the poor solubility of hydrophobic drugs and the limited penetration of the stratum corneum. In this study, a near-infrared (NIR) light-responsive thermosensitive hydrogel (PDLLA-PEG-PDLLA, PLEL)-based drug reservoir is developed that directly incorporated gold nanorods (GNRs) and methotrexate (MTX) in the sol state at low temperature, which is referred to as PLEL@GNR+MTX. The in vitro anti-psoriasis experiment indicated that, GNRs, as photothermal cores of composite hydrogel, not only triggered keratinocyte apoptosis but also promoted MTX release in a synergistic manner.
View Article and Find Full Text PDFAPMIS
January 2025
Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK.
Infections of intact and damaged skin barriers and keratin are frequently associated with complex biofilm communities containing bacteria and fungi, yet there are limited options for successful management. This study intended to focus on the utility of some novel proprietary lactam molecules, quorum sensing (QS)-derived halogenated furanones, which act to block the QS pathway, against key fungal pathogens of the skin (Candida albicans, Malassezia furfur and Microsporum gypseum). Moreover, we aimed to assess how these actives performed against complex interkingdom biofilms in a clinically relevant model.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
Introduction: Atopic dermatitis (AD) is a common and relapsing skin disease characterized by skin barrier dysfunction, inflammation, and chronic pruritus. Both cutaneous barrier dysfunction and immune dysregulation are critical etiologies of the pathology of AD. Although various anti-inflammatory pharmacological agents, including cytokine inhibitors and signaling pathway blockers, have been developed recently, keeping the skin clean is of utmost importance in maintaining physiological cutaneous barrier function and avoiding an AD flare.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India.
Transdermal drug delivery (TDD) represents a transformative paradigm in drug administration, offering advantages such as controlled drug release, enhanced patient adherence, and circumvention of hepatic first-pass metabolism. Despite these benefits, the inherent barrier function of the skin, primarily attributed to the stratum corneum, remains a significant impediment to the efficient permeation of therapeutic agents. Recent advancements have focused on macromolecular-assisted permeation enhancers, including carbohydrates, lipids, amino acids, nucleic acids, and cell-penetrating peptides, which modulate skin permeability by transiently altering its structural integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!