Efficient and flexible synthesis of new photoactivatable propofol analogs.

Bioorg Med Chem Lett

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, United States. Electronic address:

Published: May 2021

Propofol is a widely used general anesthetic, which acts by binding to and modulating several neuronal ion channels. We describe the synthesis of photoactivatable propofol analogs functionalized with an alkyne handle for bioorthogonal chemistry. Such tools are useful for detecting and isolating photolabeled proteins. We designed expedient and flexible synthetic routes to three new diazirine-based crosslinkable propofol derivatives, two of which have alkyne handles. As a proof of principle, we show that these compounds activate heterologously expressed Transient Receptor Potential Ankyrin 1 (TRPA1), a key ion channel of the pain pathway, with a similar potency as propofol in fluorescence-based functional assays. This work demonstrates that installation of the crosslinkable and clickable group on a short nonpolar spacer at the para position of propofol does not affect TRPA1 activation, supporting the utility of these chemical tools in identifying and characterizing potentially druggable binding sites in propofol-interacting proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2021.127927DOI Listing

Publication Analysis

Top Keywords

synthesis photoactivatable
8
photoactivatable propofol
8
propofol analogs
8
propofol
6
efficient flexible
4
flexible synthesis
4
analogs propofol
4
propofol general
4
general anesthetic
4
anesthetic acts
4

Similar Publications

In a search for dyes photoactivatable with visible light, fluorenes with substituents at positions 2 and 7 were prepared, and their absorption and emission spectra were studied. In particular, the synthesis route to 9-diazofluorenes with 2-(N,N-dialkylamino) and N-modified 7-(4-pyridyl) substituents was established. These compounds are initially non-fluorescent, undergo photolysis with UV or blue light, and-in non-polar media-provide orange- to red-emitting products with a large separation between absorption and emission bands.

View Article and Find Full Text PDF

Bioorthogonal chemical reporters for profiling retinoic acid-modified and retinoic acid-interacting proteins.

Bioorg Med Chem

January 2025

State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. Electronic address:

Vitamin A and its primary active derivative, all-trans retinoic acid (RA), are endogenous signaling molecules essential for numerous biological processes, including cell proliferation, differentiation, and immune modulation. Owing to its differentiation-inducing effect, RA was the first differentiating agent approved for the clinical treatment of acute myeloid leukemia. While the classical mechanisms of RA signaling involve nuclear receptors, such as retinoic acid receptors (RARs), emerging evidence suggests that RA also engages in non-covalent and covalent interactions with a broader range of proteins.

View Article and Find Full Text PDF

Morphological Features Influence the Drug Loading and Delivery Efficacy of Photoactivatable Gold Nanocarriers for Antitumor Photo/Chemotherapy.

ACS Appl Mater Interfaces

January 2025

Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.

Photoactivatable gold nanocarriers are transforming antitumor therapies by leveraging their distinctive physicochemical properties, enabling targeted drug delivery and enhanced therapeutic efficacy in cancer treatment. This study systematically investigates how surface topography and morphology of gold nanocarriers influence drug loading capacity, light-to-heat conversion efficiency, and overall therapeutic performance in photo/chemotherapy. We synthesized four distinct morphologies of gold nanoparticles: porous gold nanocups (PAuNCs), porous gold nanospheres (PAuNSs), solid gold nanocups (SAuNCs), and solid gold nanospheres (SAuNSs).

View Article and Find Full Text PDF

Carbon Monoxide-Releasing Activity of Plant Flavonoids.

J Agric Food Chem

January 2025

Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, General University Hospital in Prague and 1st Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic.

Flavonoids are naturally occurring compounds found in fruits, vegetables, and other plant-based foods, and they are known for their health benefits, such as UV protection, antioxidant, anti-inflammatory, and antiproliferative properties. This study investigates whether flavonoids, such as quercetin and 2,3-dehydrosilybin, can act as photoactivatable carbon monoxide (CO)-releasing molecules under physiological conditions. CO has been recently recognized as an important signaling molecule.

View Article and Find Full Text PDF

Organelles play essential roles in cellular homeostasis and various cellular functions in eukaryotic cells. The current experimental strategy to modulate organelle functions is limited due to the dynamic nature and subcellular distribution of organelles in live cells. Optogenetics utilizes photoactivatable proteins to enable dynamic control of molecular activities through visible light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!