Self-assembled cylindrical aggregates made of amphiphilic molecules emerged almost 40 years ago. Due to their length up to micrometers, those particles display original physico-chemical properties such as important flexibility and, for concentrated samples, a high viscoelasticity making them suitable for a wide range of industrial applications. However, a quarter of century was needed to successfully take advantage of those improvements towards therapeutic purposes. Since then, a wide diversity of biocompatible materials such as polymers, lipids or peptides, have been developed to design self-assembling elongated drug nanocarriers, suitable for therapeutic or diagnostic applications. More recently, the investigation of the main forces driving the unidirectional growth of these nanodevices allowed a translation toward the formation of pure nanodrugs to avoid the use of unnecessary side materials and the possible toxicity concerns associated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.addr.2021.02.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!