Differentially expressed genes induced by β-caryophyllene in a rat model of cerebral ischemia-reperfusion injury.

Life Sci

Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China. Electronic address:

Published: May 2021

Experimental studies have shown that β-caryophyllene (BCP) improved neurological deficits of cerebral ischemia-reperfusion injury (CIRI) rats resulting from Middle Cerebral Artery Occlusion (MCAO). However, research on targets of BCP on CIRI has not been completed. In this study, the mRNA sequencing was used to distinguish various therapeutic multiple targets of BCP on CIRI. Differentially expressed genes (DEGs) were identified from RNA-seq analysis. CIRI induced up-regulated genes (CIRI vs. Sham) and BCP -induced down-regulated genes (BCP vs CIRI) were identified. Significant DEGs were identified only that expressed in each of all samples. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis of significant DEGs were determined by cluster Profiler. Protein interactive network (PPI) was analyzed using the String tool and Hub genes was identified by cytoHubba. Transcription factor (TF) regulatory network for the potential Hub genes was constructed. Western blot and ELISA were used to verified hub genes and relative inflammatory cytokines. After mRNA sequencing, a total of 411 DEGs were filtered based on the 2 series (CIRI vs. Sham and CIRI vs. BCP), with Pax1, Cxcl3 and Ccl20 are the most remarkable ones reversed by BCP. GO analysis was represented by DEGs involved in multiple biological process such as extra-cellular matrix organization, leukocyte migration, regulation of angiogenesis, reactive oxygen species metabolic process, etc. KEGG analysis showed that DEGs participated several signaling pathways including MAPK signaling pathway (rno04010), Cytokine-cytokine receptor interaction (rno04060), JAK-STAT signaling pathway (rno04630), and others. The protein-protein interaction (PPI) network consisted of 339 nodes and 1945 connections, and top ten Hub genes were identified by cytoHubba such as TIMP1, MMP-9, and STAT3. Subsequently, a TFs-miRNAs-targets regulatory network was established, involving 6 TFs, 5 miRNAs, and 10 hub genes, consisting of several regulated models such as Brd4 - rno-let-7e - Mmp9, Brd4 - rno-let-7i - Stat3, and Hnf4a- rno-let-7b -Timp1. Finally, western blot demonstrated that BCP could inhibit the increased TIMP1, MMP-9 and STAT3 expression in rat brains after I/R. ELISA represented that BCP could suppress inflammatory cytokines caused by CIRI and present anti-oxidative property. In conclusion, this study shows that the intervention of BCP can significantly reduce neurologic deficit, improve the cerebral ischemia, and a total of ten hub genes were found closely related to the treatment of BCP on CIRI. Prudent experimental validation suggests that the BCP might have the neuro-protective effects in CIRI by decreasing the expression of MMP-9 and TIMP-1, STAT3. In a sense, this study reveals that the MMP-9/TIMP-1 signaling pathway may be involved in the injury after CIRI and thus provides a new treatment strategy as well as a researching method for stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2021.119293DOI Listing

Publication Analysis

Top Keywords

hub genes
24
bcp ciri
16
bcp
12
ciri
12
signaling pathway
12
genes
11
differentially expressed
8
expressed genes
8
cerebral ischemia-reperfusion
8
ischemia-reperfusion injury
8

Similar Publications

Background: Traumatic brain injury (TBI) can generally be divided into focal damage and diffuse damage, and neonate Hypoxia-Ischemia Brain Damage (nHIBD) is one of the causes of diffuse damage. Patients with nHIBD are at an increased risk of developing Alzheimer's disease (AD). However, the shared pathogenesis of patients affected with both neurological disorders has not been fully elucidated.

View Article and Find Full Text PDF

Background: Unraveling the pathogenesis of colorectal cancer (CRC) can aid in developing prevention and treatment strategies. Aurora kinase A (AURKA) is a key participant in mitotic control and interacts with its co-activator, the targeting protein for Xklp2 (TPX2) microtubule nucleation factor. AURKA is associated with poor clinical outcomes and high risks of CRC recurrence.

View Article and Find Full Text PDF

Background: Ferroptosis, a recently discovered iron-dependent cell death, is linked to various diseases but its role in endometriosis is still not fully understood.

Methods: In this study, we integrated microarray data of endometriosis from the GEO database and ferroptosis-related genes (FRGs) from the FerrDb database to further investigate the regulation of ferroptosis in endometriosis and its impact on the immune microenvironment. WGCNA identified ferroptosis-related modules, annotated by GO & KEGG.

View Article and Find Full Text PDF

Background: Patients with pancreatic ductal adenocarcinoma (PDAC) face a highly unfavorable outcome and have a poor response to standard treatments. Immunotherapy, especially therapy based on natural killer (NK) cells, presents a promising avenue for the treatment of PDAC.

Aims: This research endeavor seeks to formulate a predictive tool specifically designed for PDAC based on NK cell-related long non-coding RNA (lncRNA), revealing new molecular subtypes of PDAC to promote personalized and precision treatment.

View Article and Find Full Text PDF

Introduction: Recent epidemiological data suggests a rising incidence of breast angiosarcoma (AS-B) in the Western population, with over two-thirds related to irradiation or chronic lymphedema. However, unlike head and neck angiosarcoma (AS-HN), AS-B disease characteristics in Asia remain unclear.

Methods: We examined clinical patterns of angiosarcoma patients (n = 176) seen in an Asiantertiary cancer center from 1999 to 2021, and specifically investigated the molecular and immune features of AS-B in comparison to AS-HN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!