Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although pulmonary endothelial progenitor cells (EPCs) hold promise for cell-based therapies for neonatal pulmonary disorders, whether EPCs can be derived from pluripotent embryonic stem cells (ESCs) or induced pluripotent stem cells remains unknown. To investigate the heterogeneity of pulmonary EPCs and derive functional EPCs from pluripotent ESCs. Single-cell RNA sequencing of neonatal human and mouse lung was used to identify the heterogeneity of pulmonary EPCs. CRISPR/Cas9 gene editing was used to genetically label and purify mouse pulmonary EPCs. Functional properties of the EPCs were assessed after cell transplantation into neonatal mice with mutation, a mouse model of alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Interspecies mouse-rat chimeras were produced through blastocyst complementation to generate EPCs from pluripotent ESCs for cell therapy in ACDMPV mice. We identified a unique population of EPCs, FOXF1cKIT EPCs, as a subset of recently described general capillary cells (gCAPs) expressing SMAD7, ZBTB20, NFIA, and DLL4 but lacking mature arterial, venous, and lymphatic markers. FOXF1cKIT gCAPs are reduced in ACDMPV, and their transcriptomic signature is conserved in mouse and human lungs. After cell transplantation into the neonatal circulation of ACDMPV mice, FOXF1cKIT gCAPs engraft into the pulmonary vasculature, stimulate angiogenesis, improve oxygenation, and prevent alveolar simplification. FOXF1cKIT gCAPs, produced from ESCs in interspecies chimeras, are fully competent to stimulate neonatal lung angiogenesis and alveolarization in ACDMPV mice. Cell-based therapy using donor or ESC/induced pluripotent stem cell-derived FOXF1cKIT endothelial progenitors may be considered for treatment of human ACDMPV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513594 | PMC |
http://dx.doi.org/10.1164/rccm.202003-0758OC | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!