(Tb,Eu)-doped ZnO-annealed films at 1100 °C showed intense photoluminescense (PL) emission from Eu and Tb ions. The high-temperature annealing led to a chemical segregation and a secondary Zn-free phase formation that is suspected to be responsible for the high PL intensity. Large faceted inclusions of rare-earth (RE) silicates of a size of few hundred nanometers were observed. Owing to various advanced electron microscopy techniques, a detailed microstructural study of these nanometric inclusions combining atomic Z contrast imaging (STEM) and precession electron diffraction tomography (PEDT) data was carried out and resulted in the determination of a hexagonal 6/-type (Tb,Eu)(SiO)O structure related to an oxy-apatite structure. Chemical analyses from spectroscopic data (energy-dispersive X-ray mapping and electron energy loss spectroscopy) at the atomic scale showed that both RE elements sitting on two independent (4f) and (6h) atomic sites have three-fold oxidation states, while refinements of their occupancy sites from PEDT data have evidenced preferential deficiency for the first one. The deduced RE-O distances and their corresponding bond valences are listed and discussed with the efficient energy transfer from Tb toward Eu.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.0c03361DOI Listing

Publication Analysis

Top Keywords

nanometric inclusions
8
electron diffraction
8
contrast imaging
8
pedt data
8
identification tbeusioo
4
tbeusioo oxy-apatite
4
oxy-apatite structures
4
structures nanometric
4
inclusions annealed
4
annealed eutb-doped
4

Similar Publications

In this study, the extract of leaf and flower of was obtained using an ultrasonic-assisted extraction method. The extraction yield and the content of phenolic, flavonoid, and flavonol compounds in the flower extract were higher (13.93%, 74.

View Article and Find Full Text PDF

Aim: The aim of this study was to investigate and compare the antimicrobial effects of an 810-nanometer diode laser, utilizing or not utilizing toluidine blue as a photosensitizer, in the management of peri-implant mucositis.

Settings And Design: The present study was carried out in 30 implant sites in 15 patients with peri-implant mucositis with a specific inclusion and exclusion criteria. 15 sites were treated utilizing a diode laser (control group) and 15 with photodynamic therapy (test group) in a split-mouth format.

View Article and Find Full Text PDF

Automated Deuterium Relaxation-Ordered SpectroscopY in solution (ADROSYS), an automated two-dimensional deuterium NMR methodology, discriminates between DO populations (as well as deuterium-labeled alcohol groups) whose properties differ as a result of being confined inside nanoscale volumes. In this contribution, a proof-of-principle demonstration on reverse micelles (RMs) yields the insight that as the length scale of the confinement decreases from several nanometers down to less than a nanometer, the position of the signal peak migrates through the two-dimensional (2D) spectrum, tracing out a distinctive path in the 2D space (of relaxation time vs chemical shift). The signals typically follow a relatively gentle linear path for water confined on the scale of several nanometers, before curving once the surfactants confine the water molecules to length scales smaller than 1-2 nm.

View Article and Find Full Text PDF

Chemical, physical, and biological decay may partially or totally hide the historical and technological information carried by waterlogged wood. Investigation of the above-mentioned decay processes is essential to assess the wood preservation state, and it is important to find new methods for the consolidation and safeguarding of wooden archaeological heritage. A conventional method for assessing the wood preservation state is light microscopy.

View Article and Find Full Text PDF

Liquid metal-elastomer composites (LMECs) have gathered significant attention for their potential applications in various functional stretchable devices, with inclusion sizes ranging from micrometers to nanometers. These composites exhibit exceptional properties, such as high electric permittivity and thermal conductivity, surpassing those of the elastomer matrix, thus enabling a broader range of applications without compromising the material's stretchability. To investigate the diverse effective elastic and functional properties of LMECs, micromechanics-based homogenization method based on Eshelby's inclusion solution are invaluable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!