Altered communication dynamics reflect cognitive deficits in temporal lobe epilepsy.

Epilepsia

Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.

Published: April 2021

Objective: Although temporal lobe epilepsy (TLE) is recognized as a system-level disorder, little work has investigated pathoconnectomics from a dynamic perspective. By leveraging computational simulations that quantify patterns of information flow across the connectome, we tested the hypothesis that network communication is abnormal in this condition, studied the interplay between hippocampal- and network-level disease effects, and assessed associations with cognition.

Methods: We simulated signal spreading via a linear threshold model that temporally evolves on a structural graph derived from diffusion-weighted magnetic resonance imaging (MRI), comparing a homogeneous group of 31 patients with histologically proven hippocampal sclerosis to 31 age- and sex-matched healthy controls. We evaluated the modulatory effects of structural alterations of the neocortex and hippocampus on network dynamics. Furthermore, multivariate statistics addressed the relationship with cognitive parameters.

Results: We observed a slowing of in- and out-spreading times across multiple areas bilaterally, indexing delayed information flow, with the strongest effects in ipsilateral frontotemporal regions, thalamus, and hippocampus. Effects were markedly reduced when controlling for hippocampal volume but not cortical thickness, underscoring the central role of the hippocampus in whole-brain disease expression. Multivariate analysis associated slower spreading time in frontoparietal, limbic, default mode, and subcortical networks with impairment across tasks tapping into sensorimotor, executive, memory, and verbal abilities.

Significance: Moving beyond descriptions of static topology toward the formulation of brain dynamics, our work provides novel insight into structurally mediated network dysfunction and demonstrates that altered whole-brain communication dynamics contribute to common cognitive difficulties in TLE.

Download full-text PDF

Source
http://dx.doi.org/10.1111/epi.16864DOI Listing

Publication Analysis

Top Keywords

communication dynamics
8
temporal lobe
8
lobe epilepsy
8
altered communication
4
dynamics
4
dynamics reflect
4
reflect cognitive
4
cognitive deficits
4
deficits temporal
4
epilepsy objective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!