In this article, a novel thruster information fusion fault diagnosis method for the deep-sea human occupied vehicle (HOV) is proposed. A deep belief network (DBN) is introduced into the multisensor information fusion model to identify uncertain and unknown, continuously changing fault patterns of the deep-sea HOV thruster. Inputs for the DBN information fusion fault diagnosis model are the control voltage, feedback current, and rotational speed of the deep-sea HOV thruster; and the output is the corresponding fault degree parameter ( s ), which indicates the pattern and degree of the thruster fault. In order to illustrate the effectiveness of the proposed fault diagnosis method, a pool experiment under different simulated fault cases is conducted in this study. The experimental results have proved that the DBN information fusion fault diagnosis method can not only diagnose the continuously changing, uncertain, and unknown thruster fault but also has higher identification accuracy than the information fusion fault diagnosis methods based on traditional artificial neural networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2021.3055770 | DOI Listing |
Sensors (Basel)
January 2025
Hubei Key Laboratory of Power Equipment & System Security for Integrated Energy, School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China.
High-voltage (HV) cables are increasingly used in urban power grids, and their safe operation is critical to grid stability. Previous studies have analyzed various defects, including the open circuit in the sheath loop, the flooding in the cross-bonded link box, and the sheath grounding fault. However, there is a paucity of research on the defect of the reverse direction between the inner core and the outer shield of the coaxial cable.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Heime (Tianjin) Electrical Engineering Systems Co., Ltd., Tianjin 301700, China.
This paper introduces a novel geometry-based synchrosqueezing S-transform (GSSST) for advanced gearbox fault diagnosis, designed to enhance diagnostic precision in both planetary and parallel gearboxes. Traditional time-frequency analysis (TFA) methods, such as the Synchrosqueezing S-transform (SSST), often face challenges in accurately representing fault-related features when significant mode closely spaced components are present. The proposed GSSST method overcomes these limitations by implementing an intuitive geometric reassignment framework, which reassigns time-frequency (TF) coefficients to maximize energy concentration, thereby allowing fault components to be distinctly isolated even under challenging conditions.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute for Energy Engineering, Universitat Politècnica de València, Camino. de Vera s/n, 46022 Valencia, Spain.
Induction motors are essential components in industry due to their efficiency and cost-effectiveness. This study presents an innovative methodology for automatic fault detection by analyzing images generated from the Fourier spectra of current signals using deep learning techniques. A new preprocessing technique incorporating a distinctive background to enhance spectral feature learning is proposed, enabling the detection of four types of faults: healthy motor coupled to a generator with a broken bar (HGB), broken rotor bar (BRB), race bearing fault (RBF), and bearing ball fault (BBF).
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China.
This study proposes a novel rolling bearing fault diagnosis technique based on a synchrosqueezing wavelet transform (SWT) and a transfer residual convolutional neural network (TRCNN) designed to address the difficulties of feature extraction caused by the non-stationarity of fault signals, as well as the issue of low fault diagnosis accuracy resulting from small sample quantities. This approach transforms the one-dimensional vibration signal into time-frequency diagrams using an SWT based on complex Morlet wavelet basis functions, which redistributes (squeezes) the values of the wavelet coefficients at different localized points in a time-frequency plane to the estimated instantaneous frequencies. This allows the energy to be more fully concentrated in actual corresponding frequency components.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Beijing Institute of Space Launch Technology, Beijing 100076, China.
When using a fiber optic gyroscope as the core measurement element in an inertial navigation system, its work stability and reliability directly affect the accuracy of the navigation system. The modeling and fault diagnosis of the gyroscope is of great significance in ensuring the high accuracy and long endurance of the inertial system. Traditional diagnostic models often encounter challenges in terms of reliability and accuracy, for example, difficulties in feature extraction, high computational cost, and long training time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!