A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distributed Connected Component Filtering and Analysis in 2D and 3D Tera-Scale Data Sets. | LitMetric

AI Article Synopsis

  • Connected filters and multi-scale tools analyze connected components in images, using component trees for efficient representation and hierarchical organization.
  • The paper introduces disccofan, which upgrades a 2D method to perform 3D processing and manage higher dynamic range data, utilizing both shared and distributed memory techniques.
  • Disccofan demonstrates significant speed improvements, achieving a 11.20x speed-up with 48 processes on a large 3D dataset, while also minimizing memory usage by 22 times, making it effective for analyzing vast 2D and 3D datasets.

Article Abstract

Connected filters and multi-scale tools are region-based operators acting on the connected components of an image. Component trees are image representations to efficiently perform these operations as they represent the inclusion relationship of the connected components hierarchically. This paper presents disccofan (DIStributed Connected COmponent Filtering and ANalysis), a new method that extends the previous 2D implementation of the Distributed Component Forests (DCFs) to handle 3D processing and higher dynamic range data sets. disccofan combines shared and distributed memory techniques to efficiently compute component trees, user-defined attributes filters, and multi-scale analysis. Compared to similar methods, disccofan is faster and scales better on low and moderate dynamic range images, and is the only method with a speed-up larger than 1 on a realistic, astronomical floating-point data set. It achieves a speed-up of 11.20 using 48 processes to compute the DCF of a 162 Gigapixels, single-precision floating-point 3D data set, while reducing the memory used by a factor of 22. This approach is suitable to perform attribute filtering and multi-scale analysis on very large 2D and 3D data sets, up to single-precision floating-point value.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2021.3064223DOI Listing

Publication Analysis

Top Keywords

data sets
12
distributed connected
8
connected component
8
component filtering
8
filtering analysis
8
filters multi-scale
8
connected components
8
component trees
8
dynamic range
8
multi-scale analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!