TiCT MXene for Sensing Applications: Recent Progress, Design Principles, and Future Perspectives.

ACS Nano

Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, P.R. China.

Published: March 2021

Sensors are becoming increasingly significant in our daily life because of the rapid development in electronic and information technologies, including Internet of Things, wearable electronics, home automation, intelligent industry, . There is no doubt that their performances are primarily determined by the sensing materials. Among all potential candidates, layered nanomaterials with two-dimensional (2D) planar structure have numerous superior properties to their bulk counterparts which are suitable for building various high-performance sensors. As an emerging 2D material, MXenes possess several advantageous features of adjustable surface properties, tunable bandgap, and excellent mechanical strength, making them attractive in various applications. Herein, we particularly focus on the recent research progress in MXene-based sensors, discuss the merits of MXenes and their derivatives as sensing materials for collecting various signals, and try to elucidate the design principles and working mechanisms of the corresponding MXene-based sensors, including strain/stress sensors, gas sensors, electrochemical sensors, optical sensors, and humidity sensors. In the end, we analyze the main challenges and future outlook of MXene-based materials in sensor applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c00248DOI Listing

Publication Analysis

Top Keywords

sensors
9
design principles
8
sensing materials
8
mxene-based sensors
8
tict mxene
4
mxene sensing
4
sensing applications
4
applications progress
4
progress design
4
principles future
4

Similar Publications

Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.

View Article and Find Full Text PDF

A PDMS/chitosan/MPMs composite film based on multi-field coupling enhancement for African swine fever virus P72 protein detection.

Mikrochim Acta

January 2025

Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China.

African swine fever (ASF) is an acute hemorrhagic disease in pigs caused by the African swine fever virus (ASFV), which has a high mortality rate and brought great damage to global pig farming industry. At present, there is no effective treatment or vaccine to combat ASFV infection, so early detection of ASFV has become particularly important. Therefore, the PDMS/chitosan/MPMs composite film was proposed to detect ASFV P72.

View Article and Find Full Text PDF

Design and experimental study of tillage depth control system for electric rotary tiller based on LADRC.

Sci Rep

January 2025

The Key Laboratory for Agricultural Machinery Intelligent Control and Manufacturing of Fujian Education Institutions, Wuyi University, Nanping, 354300, Fujian, China.

This paper proposes an adaptive real-time tillage depth control system for electric rotary tillers, based on Linear Active Disturbance Rejection Control (LADRC), to improve tillage depth accuracy in tea garden intercropping with soybeans. The tillage depth control system comprises a body posture sensor, a control unit, and a hybrid stepper motor, integrating sensor data to drive the motor and achieve precise depth control. Real-time displacement sensor signals are compared with target values, enabling closed-loop control of the rotary tiller.

View Article and Find Full Text PDF
Article Synopsis
  • Glucose sensing is essential for managing diabetes, and this study explores NbCT-selenium nanoparticles for effective nonenzymatic glucose detection.
  • The composite material was characterized using techniques like scanning and transmission electron microscopy, and it was tested on a gold disc electrode in an alkaline solution.
  • The sensor operates at a low overpotential of 0.16 V, demonstrating a detection range of 2 to 30 mM, with a notable sensitivity of 4.15 µA mM cm and a detection limit of 1.1 mM.
View Article and Find Full Text PDF
Article Synopsis
  • Human-machine interaction is rapidly transforming technology, with gesture recognition being key to improving how humans interact with machines.
  • Existing systems often lack comfort and usability, prompting the development of a new handwriting recognition technology using a hybrid-fabric wristband that incorporates advanced sensors.
  • This innovative system features a lightweight, breathable design with high accuracy (96.63%) in handwriting recognition, aiming to enhance the user experience in wearable devices for better interaction in virtual environments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!