Beckwith-Wiedemann syndrome (BWS) is a genomic imprinting disorder, characterized by macroglossia, abdominal wall defects, lateralized overgrowth, and predisposition to embryonal tumors. It is caused by the defect of imprinted genes on chromosome 11p15.5, regulated by imprinting control (IC) domains, IC1, and IC2. Rarely, CDKN1C and chromosomal changes can be detected. The aim of this study is to retrospectively evaluate 55 patients with BWS using the new diagnostic criteria developed by the BWS consensus, and to investigate (epi)genetic changes and follow-up findings in classic and atypical phenotypes. Loss of methylation in IC2 region (IC2-LoM), 11p15.5 paternal uniparental disomy (pUPD11), and methylation gain in IC1 region (IC1-GoM) are detected in 31, eight, and five patients, respectively. Eleven patients have had no molecular defects. Thirty-five patients are classified as classical and 20 as atypical phenotype. Patients with classical phenotype are more frequent in the IC2-LoM (25/31), while patients with atypical phenotype are common in the pUPD11 group (5/8). Malignant tumors have developed in six patients (10.9%); three of these patients have IC1-GoM, two pUPD11, one IC2-LoM genotype, and four an atypical phenotype. We observed that the face was round in the infantile period and elongated as the child grew-up, developing prognathism and becoming asymmetrical if hemi-macroglossia was present in the classical phenotype. These findings were mild in the atypical phenotype. These results support the importance of using the new diagnostic criteria to facilitate the diagnosis of patients with atypical phenotype who have higher tumors risk. This study also provides important information about facial gestalt.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.a.62158 | DOI Listing |
Ann Endocrinol (Paris)
January 2025
Univ. Lille, Inserm, CHU Lille, U1286 - Infinite, F-59045 Lille Cedex, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France. Electronic address:
Around 10% of cases of primary hyperparathyroidism are thought to be genetic in origin, some of which are part of a syndromic form such as multiple endocrine neoplasia types 1, 2A or 4 or hyperparathyroidism-jaw tumor syndrome, while the remainder are cases of isolated familial primary hyperparathyroidism. Recognition of these genetic forms is important to ensure appropriate management according to the gene and type of variant involved, but screening for a genetic cause is not justified in all patients presenting primary hyperparathyroidism. The indications for genetic analysis have made it possible to propose a decision tree that takes into account whether the presentation is familial or sporadic, syndromic or isolated, patient age, and histopathological type of parathyroid lesion.
View Article and Find Full Text PDFFront Child Adolesc Psychiatry
November 2024
Faculty of Human Sciences, Sophia University, Chiyoda-ku, Tokyo, Japan.
Introduction: The (EMB) theory, a major causal hypothesis of autism (ASD: autism spectrum disorder), attributes excess androgens during early development as one of the causes. While studies have generally followed the EMB theory in females at birth, the co-occurrence of ASD in males at birth has been observed in conditions that are assumed to be associated with reduced androgen action during early development, including Klinefelter syndrome (KS) and sexual minorities. ASD is also associated with atypical sensory sensitivity, synesthesia, and savant syndrome.
View Article and Find Full Text PDFAutophagy
January 2025
Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
The multi-step macroautophagy/autophagy process ends with the cargo-laden autophagosome fusing with the lysosome to deliver the materials to be degraded. The metazoan-specific autophagy factor EPG5 plays a crucial role in this step by enforcing fusion specificity and preventing mistargeting. How EPG5 exerts its critical function and how its deficiency leads to diverse phenotypes of the rare multi-system disorder Vici syndrome are not fully understood.
View Article and Find Full Text PDFAnn Clin Transl Neurol
January 2025
Department of Neurology, Movement Disorders Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Uniparental isodisomy (UPiD) can cause mixed phenotypes of imprinting disorders and autosomal-recessive diseases. We present the case of a 3-year-old male with a blended phenotype of TECPR2-related hereditary sensory and autonomic neuropathy (HSAN9) and Temple syndrome (TS14) due to maternal UPiD of chromosome 14, which includes a loss-of-function founder variant in the TECPR2 gene [NM_014844.5: c.
View Article and Find Full Text PDFOncol Lett
March 2025
Gansu Province Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China.
The atypical expression of immune phenotypes in lymphoma is often associated with a poor prognosis and presents diagnostic challenges. The present study reports on a rare extranodal NK/T cell lymphoma. In addition to typical morphology and immunohistochemical characteristics, these tumors strongly express CD20 and CD30 and partially express CD15, which is associated with aggressive clinical behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!