Variation in selfing rates within and among populations of hermaphroditic flowering plants can strongly influence the evolution of reproductive strategies and the genetic structure of populations. This intraspecific variation in mating patterns may reflect both genetic and ecological factors, but the relative importance of these factors remains poorly understood. Here, we explore how selfing in 13 natural populations of the perennial wildflower Mimulus ringens is influenced by (a) pollinator visitation, an ecological factor, and (b) floral display, a trait with a genetic component that also responds to environmental variation. We also explore whether genetically based floral traits, including herkogamy, affect selfing. We found substantial variation among populations in selfing rate (0.13-0.55). Selfing increased strongly and significantly with floral display, among as well as within populations. Selfing also increased at sites with lower pollinator visitation and low plant density. However, selfing was not correlated with floral morphology. Overall, these results suggest that pollinator visitation and floral display, two factors that interact to affect geitonogamous pollinator movements, can influence the selfing rate. This study identifies mechanisms that may play a role in maintaining selfing rate variation among populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252063 | PMC |
http://dx.doi.org/10.1111/jeb.13781 | DOI Listing |
Ann Bot
January 2025
Division of BioInvasions, Global Change & Macroecology, University of Vienna, Austria.
Background And Aims: Despite accelerating interest in island evolution, the general evolutionary trajectories of island flowers remain poorly understood. In particular the island rule, which posits that small organisms become larger and large organisms to become smaller after island colonization, while tested in various plant traits, has never been tested in flower size. Here, we provide the first test for the island rule in flower size for animal- and wind-pollinated flowers, and the first evidence for generalized in-situ evolution of flower size on islands.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, China.
Flower appearance stands as a key characteristic of flowering plants and is closely linked to their ornamental value. Phytohormone Gibberellin (GA), essential for plant growth and development are widely reported for expansion in flower. DELLA proteins are known to negatively regulate GA signaling and influences plant growth and development through the regulation of cell expansion.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Earth and Life Institute-Agronomy, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
As a result of climate change, temperate regions are facing the simultaneous increase in water and heat stress. These changes may affect the interactions between plants and pollinators, which will have an impact on entomophilous crop yields. Here, we investigated the consequences of high temperatures and water stress on plant growth, floral biology, flower-reward production, and insect visitation of five varieties of common buckwheat (), an entomophilous crop of growing interest for sustainable agriculture.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Botany, Rhodes University, Makhanda, 6140, South Africa.
Pollinators are thought to play a key role in driving incipient speciation within the angiosperms. However, the mechanisms underlying floral divergence in plants with generalist pollination systems, remains understudied. Brunsvigia gregaria displays significant geographical variation in floral traits and are visited by diverse pollinator communities.
View Article and Find Full Text PDFJ Plant Res
December 2024
Instituto de Pesquisas Jardim Botânico Do Rio de Janeiro (JBRJ), Diretoria de Pesquisa Científica, Rio de Janeiro, RJ, 22460-030, Brazil.
Erythrina is a Pantropical bird-pollinated genus of Fabaceae. Thus, its flowers are usually large, showy, red or yellowish, offering nectar as the principal resource. There are two main interaction systems with birds in Erythrina: in one, the inflorescences are erect and the flowers are horizontal, offering no landing platform; in the other, the inflorescences are horizontal and the flower parts are more exposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!