Objective: The aim was to determine the prevalence and risk factors for electrographic seizures and other electroencephalographic (EEG) patterns in patients with Coronavirus disease 2019 (COVID-19) undergoing clinically indicated continuous electroencephalogram (cEEG) monitoring and to assess whether EEG findings are associated with outcomes.
Methods: We identified 197 patients with COVID-19 referred for cEEG at 9 participating centers. Medical records and EEG reports were reviewed retrospectively to determine the incidence of and clinical risk factors for seizures and other epileptiform patterns. Multivariate Cox proportional hazards analysis assessed the relationship between EEG patterns and clinical outcomes.
Results: Electrographic seizures were detected in 19 (9.6%) patients, including nonconvulsive status epilepticus (NCSE) in 11 (5.6%). Epileptiform abnormalities (either ictal or interictal) were present in 96 (48.7%). Preceding clinical seizures during hospitalization were associated with both electrographic seizures (36.4% in those with vs 8.1% in those without prior clinical seizures, odds ratio [OR] 6.51, p = 0.01) and NCSE (27.3% vs 4.3%, OR 8.34, p = 0.01). A pre-existing intracranial lesion on neuroimaging was associated with NCSE (14.3% vs 3.7%; OR 4.33, p = 0.02). In multivariate analysis of outcomes, electrographic seizures were an independent predictor of in-hospital mortality (hazard ratio [HR] 4.07 [1.44-11.51], p < 0.01). In competing risks analysis, hospital length of stay increased in the presence of NCSE (30 day proportion discharged with vs without NCSE: HR 0.21 [0.03-0.33] vs 0.43 [0.36-0.49]).
Interpretation: This multicenter retrospective cohort study demonstrates that seizures and other epileptiform abnormalities are common in patients with COVID-19 undergoing clinically indicated cEEG and are associated with adverse clinical outcomes. ANN NEUROL 2021;89:872-883.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8104061 | PMC |
http://dx.doi.org/10.1002/ana.26060 | DOI Listing |
MethodsX
June 2025
Medical College of Wisconsin, Department of Neurosurgery, 8701 Watertown Plank Road, Milwaukee, WI, 53226.
Electrographic recording of brain activity through either surface electrodes (electroencephalography, EEG) or implanted electrodes (electrocorticography, ECOG) are valuable research tools in neuroscience across many disciplines, including epilepsy, sleep science and more. Research techniques to perform recordings in rodents are wide-ranging and often require custom parts that may not be readily available. Moreover, the information required to connect individual components is often limited and can therefore be challenging to implement.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
Background: Seizures, including status epilepticus (SE), are common in anti-NMDA receptor encephalitis (NMDARE). We aimed to describe clinical and electrographic features of patients with seizures with NMDARE, determine factors associated with SE, and describe long-term seizure outcomes.
Methods: We retrospectively identified patients with seizures in the setting of NMDARE treated at inpatient Mayo Clinic sites during the acute phase of encephalitis between October 2008 and March 2023.
Children (Basel)
December 2024
Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
Infantile spasms are common in Down Syndrome (DS), but the mechanisms by which DS predisposes to this devastating epilepsy syndrome are unclear. In general, neuronal excitability and therefore seizure predisposition results from an imbalance of excitation over inhibition in neurons and neural networks of the brain. Animal models provide clues to mechanisms and thereby provide potential therapeutic approaches.
View Article and Find Full Text PDFEpilepsia
January 2025
Division of Child Neurology, Stanford Medicine Children's Health, California, USA.
Epilepsia Open
January 2025
Division of Pediatric Critical Care Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Objectives: Pediatric status epilepticus (SE) carries a high risk of morbidity and mortality and can result in neurologic injury. Establishing seizure activity on conventional EEG (cEEG) is essential but can delay treatment of seizures due to technician limitations. Rapid response EEG (rrEEG) device Ceribell and its Brain Stethoscope function can be used and interpreted rapidly by bedside providers with minimal training.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!