Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microvesicles are shed from cell surfaces during infectious or inflammatory conditions and may contribute to the pathogenesis of disease. During Shiga toxin-producing Escherichia coli (STEC) infection, microvesicles are released from blood cells. These microvesicles play a part in inflammation, thrombosis, hemolysis, and the transfer of the main virulence factor of STEC strains, Shiga toxin, to target organ cells. This chapter describes how to isolate blood cell- and cell culture-derived microvesicles from plasma or cell culture medium, respectively, and how to characterize these microvesicles by various methods, with special focus on Shiga toxin-associated microvesicles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1339-9_9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!