Acidithiobacillus ferrooxidans (At. ferrooxidans) is a bacterium that has the ability to metabolize iron. It converts Fe into Fe during its metabolic cycle. Hence, the At. ferrooxidans spent medium is rich in Fe. The presence of Fe contributes to a peroxidase-like activity. Therefore, in this study, an attempt has been made to explore the peroxidase-like activity of the At. ferrooxidans spent medium. It has been observed that the At. ferrooxidans spent medium oxidized 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (HO). The effect of various process parameters on the peroxidase-like activity has been studied. Optimum peroxidase-like activity is achieved using 5 µl of the spent medium, 0.3 mM TMB concentration, 4 mM HO concentration, 4.2 pH, and 40 °C temperature. The peroxidase-like activity of the At. ferrooxidans spent medium has been used to develop a colorimetric assay for detection of glutathione (GSH). GSH inhibits the peroxidase-like activity of the At. ferrooxidans spent medium in a concentration range of 0-1 mM. The limit of detection (LOD) of GSH, obtained using the calibration plot is 0.69 mM. The developed assay is selective toward GSH, as the presence of amino acids, metals, and sugars have shown a negligible effect on the GSH sensing ability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-021-02267-w | DOI Listing |
Mikrochim Acta
January 2025
Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
A Cr-doped VO nanobelt (Cr/VO) with remarkable peroxidase-like activity was synthesized and coupled with uricase to catalyze the cascade reaction for detection of uric acid. Notably, the affinity of Cr/VO for 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB) and hydrogen peroxide (HO) is tenfold and 20-fold higher, respectively, than that of horseradish peroxidase (HRP). The Cr/VO exhibits highly reactive and stable peroxidase activity at temperatures of 20-60 ℃.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China.
Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:
Carbon dot-based nanozymes have gained significant attention, but their application in dye degradation remains limited due to low activity and challenges in recovery and reuse. To overcome these limitations, high peroxidase-active Co-doped carbon dots (CoCDs) with surface amines were synthesized via hydrothermal method and immobilized onto TEMPO-oxidized cellulose nanofibrils (TOCNF) aerogels using EDC/NHS coupling. For the first time, this study investigates the dye degradation efficiency of CDs nanozyme.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.
The elementary mechanism and site studies of nanozyme-based inhibition reactions are ambiguous and urgently require advanced nanozymes as mediators to elucidate the inhibition effect. To this end, we develop a class of nanozymes featuring single Cu-N catalytic configurations and B-O sites as binding configurations on a porous nitrogen-doped carbon substrate (B/Cu) for inducing modulable inhibition transfer at the atomic level. The full redistribution of electrons across the Cu-N sites, induced by B-O sites incorporation, yields B/Cu with enhanced peroxidase-like activity versus Cu.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China. Electronic address:
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder globally, with no effective treatment available yet. A crucial pathological hallmark of AD is the accumulation of hyperphosphorylated tau protein, which is deteriorated by reactive oxygen species (ROS) and neuroinflammation in AD progression. Thus, alleviation of ROS and inflammation has become a potential therapeutic strategy in many studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!