Ammonium sulfate, a typical component of crystallization media of proteins, stabilizes an inactive conformation of pig muscle glyceraldehyde-3-phosphate dehydrogenase. In fact, in the presence of ammonium sulfate the reconstitution of the catalytically active holoenzyme from the apoenzyme and NAD is not instantaneous, as in the case of enzymes from Bacillus stearothermophilus and the Mediterranean lobster Palinurus vulgaris. With pig muscle enzyme, at pH 6.0, the time course of formation of the characteristic Racker band can be monitored by a rapid mixing stopped flow technique. Activation follows a single exponential curve with a rate constant independent of the concentration of both NAD and protein and, therefore, appears to be limited by a slow protein isomerization (k = 7 +/- 2 s-1). Accordingly, when the apoenzyme is simultaneously exposed to NAD and either glyceraldehyde 3-phosphate or 1,3-bisphosphoglycerate, the ensuing reactions (the redox and the acylation steps, respectively) are kinetically limited by the same protein isomerization. At pH 7.0 and 8.0, however, two among the four active sites react with NAD at an unmeasurably high rate, while the other two sites behave as they do at pH 6.0. When the pig muscle apoenzyme is preincubated and allowed to react with either glyceraldehyde 3-phosphate or 1,3-bisphosphoglycerate before the rapid mixing with NAD, both the redox reaction and the NAD-dependent activation of apo-acyl-enzyme toward arsenolysis become unmeasurably fast. Similarly, when the sulfate in the medium is replaced by ions such as phosphate and citrate, the reconstitution of the active holoenzyme is practically instantaneous. Thus, the slow protein isomerization observed in the presence of sulfate and abolished by competing substrates and anions is diagnostic of a structural state of the pig muscle apoenzyme, which is induced by sulfate ions bound within the enzyme active site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0003-9861(88)90620-0 | DOI Listing |
J Gen Physiol
March 2025
Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA.
The mechanisms underlying cooperative activation and inactivation of myocardial force extend from local, near-neighbor interactions involving troponin-tropomyosin regulatory units (RU) and crossbridges (XB) to more global interactions across the sarcomere. To better understand these mechanisms in the hearts of small and large mammals, we undertook a simplified mathematical approach to assess the contribution of three types of near-neighbor cooperative interactions, i.e.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Chemistry, University of Waterloo, Waterloo, ON, Canada. Electronic address:
Background: Normothermic ex situ heart perfusion (ESHP) has emerged as a valid modality for advanced cardiac allograft preservation and conditioning prior to transplantation though myocardial function declines gradually during ESHP thus limiting its potential for expanding the donor pool. Recently, the utilization of dialysis has been shown to preserve myocardial and coronary vasomotor function. Herein, we sought to determine the changes in myocardial metabolism that could support this improvement.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
Organoid technology, as an innovative approach in biomedicine, exhibits promising prospects in disease modeling, pharmaceutical screening, regenerative medicine, and oncology research. However, the use of tumor-derived Matrigel as the primary method for culturing organoids has significantly impeded the clinical translation of organoid technology due to concerns about potential risks, batch-to-batch instability, and high costs. To address these challenges, this study innovatively introduced a photo-crosslinkable hydrogel made from a porcine small intestinal submucosa decellularized matrix (SIS), fish collagen (FC), and methacrylate gelatin (GelMA).
View Article and Find Full Text PDFBiology (Basel)
January 2025
Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 239 3° Piso, Santiago 8370146, Chile.
Urinary incontinence is a widespread issue, particularly among women, with effective treatments remaining elusive. The pig, and especially the female pig, stands as a promising animal model for the study of this condition, due to its anatomical similarities to humans. The aim of this study was to explore the largely uncharted muscular structure of the female pig urethra, linking urethral muscle dysfunction to incontinence.
View Article and Find Full Text PDFGenomics
January 2025
Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology of Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China; Yazhouwan National Laboratory, 8 huanjin Road, Yazhou District, Sanya, City, Hainan Province 572024, China. Electronic address:
Intramuscular fat is an essential component of muscle tissue, and understanding its contribution to skeletal muscle fat infiltration and meat quality, together with the underlying genetic mechanisms, is a major topic in pig husbandry. However, the composition of cell types and gene expression profiles essential for this purpose remain largely unexplored. Here, we performed single-cell transcriptome analysis on muscle tissue from adult pigs and identified 15 cell types, including three previously uncharacterized types of adipocytes: Adipocyte 1, Adipocyte 2, and Aregs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!