Tetrahedral DNA nanostructure improves transport efficiency and anti-fungal effect of histatin 5 against Candida albicans.

Cell Prolif

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Published: May 2021

Objectives: Anti-microbial peptides (AMPs) have been comprehensively investigated as a novel alternative to traditional antibiotics against microorganisms. Meanwhile, Tetrahedral DNA nanostructures (TDNs) have gained attention in the field of biomedicine for their premium biological effects and transportation efficiency as delivery vehicles. Hence, in this study, TDN/Histatin 5 (His-5) was synthesized and the transport efficiency and anti-fungal effect were measured to evaluate the promotion of His-5 modified by TDNs.

Materials And Methods: Tetrahedral DNA nanostructures/His-5 complex was prepared via electrostatic attraction and characterized by transmission electron microscopy (TEM), polyacrylamide gel electrophoresis (PAGE), dynamic light scattering (DLS) and electrophoretic light scattering (ELS). The anti-fungal effect of the TDN/His-5 complex was evaluated by determining the growth curve and colony-forming units of C. albicans. The morphological transformation of C. albicans was observed by light microscope and scanning electron microscope (SEM). Immunofluorescence was performed, and potassium efflux was detected to mechanistically demonstrate the efficacy of TDN/His-5.

Results: The results showed that Histatin 5 modified by TDNs had preferable stability in serum and was effectively transported into C. albicans, leading to the increased formation of intracellular reactive oxygen species, higher potassium efflux and enhanced anti-fungal effect against C. albicans.

Conclusions: Our study showed that TDN/His-5 was synthesized successfully. And by the modification of TDNs, His-5 showed increased transport efficiency and improved anti-fungal effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088467PMC
http://dx.doi.org/10.1111/cpr.13020DOI Listing

Publication Analysis

Top Keywords

tetrahedral dna
12
transport efficiency
12
efficiency anti-fungal
8
light scattering
8
potassium efflux
8
anti-fungal
5
dna nanostructure
4
nanostructure improves
4
improves transport
4
efficiency
4

Similar Publications

Sensitive and accurate detection and imaging of different microRNAs (miRNAs) in cancer cells hold great promise for early disease diagnosis. Herein, a DNA tetrahedral scaffold (DTS)-corbelled autonomous-motion (AM) molecular machine based fluorescent sensing platform was designed for simultaneous detection of two types of miRNAs (miRNA-21 and miRNA-155) in HeLa cells. Locking-strand-silenced DNAzymes (P:L duplex) were firstly grafted at the loop of target-analogue-embedded double-stem hairpin substrates (TDHS) of DTS, making the sensor in a "signal off" state due to the closely distance between modified fluorophores (FAM and Cy5) with the corresponding quenchers (BHQ1 and BHQ2).

View Article and Find Full Text PDF

Folding an RCA Scaffold into an Intelligent Coiled Nanosnake for Precise/Synergistic RNAi-/Chemotherapy of Cancer.

Anal Chem

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.

An RCA product is a promising scaffold for the construction of DNA nanostructures, but so far, there is no RCA scaffold-based dynamic reconfigurable nanorobot for biological applications. In this contribution, we develop an intracellular stimuli-responsive reconfigurable coiled DNA nanosnake (N-Snake) by using incomplete aptamer-functionalized (A) DNA tetrahedrons (T) to fold a long tandemly repetitive DNA strand synthesized by rolling circle amplification reaction (R) with the help of palindromic fragment (P). A DNA-assembled product, ARTP, including spiked aptamers, can retain the structural integrity even if exposed to fetal bovine serum (FBS) for 24 h and displays substantially enhanced target molecule-dependent cellular internalization efficiency.

View Article and Find Full Text PDF

Cytosine-rich and poly(adenine)-tailed tetrahedral DNA framework (TDF) is designed as template (A-TDF) for anchoring silver nanoclusters (AgNCs) and igniting the dual-color fluorescence of AgNCs. The resultant DNA-AgNCs simultaneously emits red and green fluorescence, and the quantum yield of red fluorescence is as high as 44.8%.

View Article and Find Full Text PDF

Multifunctional DNA nanomaterials: a new frontier in rheumatoid arthritis diagnosis and treatment.

Nanoscale

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.

Rheumatoid arthritis (RA) remains a challenging autoimmune disease due to its complex and heterogeneous pathophysiology, which complicates therapeutic and diagnostic efforts. Advances in DNA nanotechnology have introduced DNA nanomaterials as promising tools to overcome these barriers. This review focuses on three primary categories of DNA nanomaterials applied in RA: DNA nanostructures, DNA aptamers, and DNA-modified nanoparticles.

View Article and Find Full Text PDF

Mitochondria-Targeted DNA-Based Nanoprobe for In Situ Monitoring of the Activity of the mtDNA Repair Enzyme and Evaluating Tumor Radiosensitivity.

Anal Chem

January 2025

New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.

Article Synopsis
  • Evaluating tumor radiosensitivity is crucial for predicting treatment success, tailoring plans, and reducing side effects, with mtDNA repair activity serving as a key indicator.
  • A novel DNA-based nanoprobe (TPP-Apt-tFNA) is developed to monitor mtDNA repair enzyme activity specifically in tumor cells by targeting mitochondria, enhancing selectivity and accuracy.
  • The research highlights that tumors with high mtDNA repair activity are less sensitive to radiation, indicating potential challenges in radiotherapy outcomes, thus emphasizing the need for new imaging tools in cancer treatment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!