In this present study, our aim was to evaluate the cell-mediated specific anti-donor antibody and its associated inflammatory cytokine secretion along with its succeeding effects on Nucleus pulposus-derived mesenchymal stem cells (NPMSCs). Tissue from the NP compartment of 12 normal mice was isolated, expanded in cell culture, and the cell phenotypes were confirmed by flow cytometry. Multipotent differentiation and its specific gene expression analysis were confirmed by reverse transcriptase PCR. T and B cells were monitored for both donor and recipient mouse and further analysis of anti-donor antibody secretion was confirmed by lymphocyte crossmatch. In conjunction with anti-donor-specific antibody analysis, the associated inflammatory cytokine expression was analyzed by ELISA. In co-culture, cell-mediated antibody secretion was elevated in T and B cells positive mouse group, when compared to control mouse group. Allogeneic-derived donor NPMSCs were found to be stimulated the secretion of pro-inflammatory cytokines and the level of pro-inflammatory cytokines showed reduced expression in control mouse serum. In co-culture group the concentration of the cell-mediated pro- and anti-inflammatory cytokines found to be increased. PRACTICAL APPLICATIONS: Mesenchymal stem cell exhibit good regeneration capacity for many types of disease, and the mechanism belongs to regeneration is not clear. In intervertebral disc, the nucleus pulposus-derived mesenchymal stem cells showed a better regeneration capacity. On the contrary, the NP cells-based therapy, the Mesenchymal stem cells showed expanded anabolic and reduced catabolic activity together with induced anti-inflammatory effect. In this study, the T & B cells were used to evaluate the anti-donor antibody secretion and also to study how it stimulates the production of anti-donor antibodies against the donor cells. Finally, it was found that T & B cells lead the synthesis of inflammatory cytokines are IL-1, IL-6, and TNF-α. From this study, the results proved that the cell-mediated pro- and anti-inflammatory cytokines to be monitored in allogeneic stem cells-based therapy of intervertebral disc degeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfbc.13681DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
20
stem cells
16
anti-donor antibody
12
antibody secretion
12
cells
9
inflammatory cytokines
8
associated inflammatory
8
inflammatory cytokine
8
nucleus pulposus-derived
8
pulposus-derived mesenchymal
8

Similar Publications

The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube.

View Article and Find Full Text PDF

Background/aims: Bruise is the extravasation of blood that may be mild or severe. Bone marrow mesenchymal stem cells (BM-MSCs) are one of the most promising cells used in regenerative medicine for treating many disorders. We aimed to evaluate the efficiency of BM-MSCs in treating cutaneous bruises.

View Article and Find Full Text PDF

Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells.

View Article and Find Full Text PDF

Objective: The direction of this study was to detect and analyze the specific mechanism of anti-apoptosis in mesenchymal stem cells (MSCs) cells caused by high expression of BCL2.

Methods: Bioinformatics was completed in Link omics. GO analysis and KEGG analysis were carried out, and the grope tool of Link omics database was used to evaluate PPI information and other core path analysis information.

View Article and Find Full Text PDF

Purpose: We aimed to explore the mechanism by which Boron-doped nano-hydroxyapatite (B-nHAp) facilitates the proliferation and differentiation of osteoblasts through controlled release of B.

Methods: B-nHAp characterization was accomplished by means of X-ray diffraction, scanning electron microscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. Human bone marrow mesenchymal stem cells (hBMSCs) were subjected to flow cytometry, alizarin red S staining, and cell counting kit-8 assay for proliferation and differentiation determination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!