Genetic Variation and Impact on Outcome in Traumatic Brain Injury: an Overview of Recent Discoveries.

Curr Neurol Neurosci Rep

Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.

Published: March 2021

Purpose Of Review: Traumatic brain injury (TBI) has a significant burden of disease worldwide and outcomes vary widely. Current prognostic tools fail to fully account for this variability despite incorporating clinical, radiographic, and biochemical data. This variance could possibly be explained by genotypic differences in the patient population. In this review, we explore single nucleotide polymorphism (SNP) TBI outcome association studies.

Recent Findings: In recent years, SNP association studies in TBI have focused on global, neurocognitive/neuropsychiatric, and physiologic outcomes. While the APOE gene has been the most extensively studied, other genes associated with neural repair, cell death, the blood-brain barrier, cerebral edema, neurotransmitters, mitochondria, and inflammatory cytokines have all been examined for their association with various outcomes following TBI. The results have been mixed across studies and even within genes. SNP association studies provide insight into mechanisms by which outcomes may vary following TBI. Their individual clinical utility, however, is often limited by small sample sizes and poor reproducibility. In the future, they may serve as hypothesis generating for future therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11910-021-01106-1DOI Listing

Publication Analysis

Top Keywords

traumatic brain
8
brain injury
8
outcomes vary
8
snp association
8
association studies
8
tbi
5
genetic variation
4
variation impact
4
impact outcome
4
outcome traumatic
4

Similar Publications

Neuropathic pain (NP) imposes a significant burden on individuals, manifesting as nociceptive anaphylaxis, hypersensitivity, and spontaneous pain. Previous studies have shown that traumatic stress in the nervous system can lead to excessive production of hydrogen sulfide (HS) in the gut. As a toxic gas, it can damage the nervous system through the gut-brain axis.

View Article and Find Full Text PDF

Partially hydrolyzed guar gum alleviates neurological deficits and gastrointestinal dysfunction in mice with traumatic brain injury.

Neurosurg Rev

January 2025

Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Zhou shan hui shui Community,199 Hailing South Road, Taizhou, Jiangsu Province, 225300, China.

Traumatic brain injury (TBI)-associated neuroinflammation and neurotoxicity can induce gastrointestinal dysfunction through the brain-gut axis. Partially hydrolyzed guar gum (PHGG) was demonstrated to exert beneficial health effects by altering gut microbiota and short-chain fatty acids (SCFAs) production. Our study aimed to explore the effects of PHGG on gastrointestinal dysfunction in TBI mouse models.

View Article and Find Full Text PDF

Retraction Note: Comment on, "Interleukin-6 as a prognostic biomarker of clinical outcomes after traumatic brain injury: a systematic review".

Neurosurg Rev

January 2025

Lab in Biotechnology and Biosignal Transduction, Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600 077, India.

View Article and Find Full Text PDF

Multidimensional Classification and Prediction of Outcome Following Traumatic Brain Injury.

J Head Trauma Rehabil

January 2025

Author Affiliations: Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia (Prof Ponsford and Drs Spitz, Pyman, Carrier, Hicks, and Nguyen); Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (Dr Spitz); TIRR Memorial Hermann Research Center Houston, Texas (Drs Sander and Sherer); and H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine & Harris Health System, Houston, Texas (Drs Sander and Sherer).

Objectives: This study aimed to identify outcome clusters among individuals with traumatic brain injury (TBI), 6 months to 10 years post-injury, in an Australian rehabilitation sample, and determine whether scores on 12 dimensions, combined with demographic and injury severity variables, could predict outcome cluster membership 1 to 3 years post-injury.

Setting: Rehabilitation hospital.

Participants: A total of 467 individuals with TBI, aged 17 to 87 (M = 44.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!