A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identifying longitudinal-growth patterns from infancy to childhood: a study comparing multiple clustering techniques. | LitMetric

Background: Most studies on children evaluate longitudinal growth as an important health indicator. Different methods have been used to detect growth patterns across childhood, but with no comparison between them to evaluate result consistency. We explored the variation in growth patterns as detected by different clustering and latent class modelling techniques. Moreover, we investigated how the characteristics/features (e.g. slope, tempo, velocity) of longitudinal growth influence pattern detection.

Methods: We studied 1134 children from The Applied Research Group for Kids cohort with longitudinal-growth measurements [height, weight, body mass index (BMI)] available from birth until 12 years of age. Growth patterns were identified by latent class mixed models (LCMM) and time-series clustering (TSC) using various algorithms and distance measures. Time-invariant features were extracted from all growth measures. A random forest classifier was used to predict the identified growth patterns for each growth measure using the extracted features.

Results: Overall, 72 TSC configurations were tested. For BMI, we identified three growth patterns by both TSC and LCMM. The clustering agreement was 58% between LCMM and TS clusters, whereas it varied between 30.8% and 93.3% within the TSC configurations. The extracted features (n = 67) predicted the identified patterns for each growth measure with accuracy of 82%-89%. Specific feature categories were identified as the most important predictors for patterns of all tested growth measures.

Conclusion: Growth-pattern detection is affected by the method employed. This can impact on comparisons across different populations or associations between growth patterns and health outcomes. Growth features can be reliably used as predictors of growth patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ije/dyab021DOI Listing

Publication Analysis

Top Keywords

growth patterns
28
growth
14
patterns
10
longitudinal growth
8
latent class
8
patterns growth
8
growth measure
8
tsc configurations
8
identified
5
identifying longitudinal-growth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!