Co-pathologies play an important role in the expression of the Alzheimer's disease clinical phenotype and may influence treatment efficacy. Early-onset Alzheimer's disease, defined as manifesting before age 65, is viewed as a relatively pure form of Alzheimer's disease with a more homogeneous neuropathological substrate. We sought to compare the frequency of common neuropathological diagnoses in a consecutive autopsy series of 96 patients with early-onset Alzheimer's disease (median age of onset = 55 years, 44 females) and 48 with late-onset Alzheimer's disease (median age of onset = 73 years, 14 females). The UCSF Neurodegenerative Disease Brain Bank database was reviewed to identify patients with a primary pathological diagnosis of Alzheimer's disease. Prevalence and stage of Lewy body disease, limbic age-related TDP-43 encephalopathy (LATE), argyrophilic grain disease, hippocampal sclerosis, cerebral amyloid angiopathy, and vascular brain injury were compared between the two cohorts. We found at least one non-Alzheimer's disease pathological diagnosis in 98% of patients with early-onset Alzheimer's disease (versus 100% of late onset), and the number of comorbid diagnoses per patient was lower in early-onset than in late-onset Alzheimer's disease (median = 2 versus 3, Mann-Whitney Z = 3.00, P = 0.002). Lewy body disease and cerebral amyloid angiopathy were common in both early and late onset Alzheimer's disease (cerebral amyloid angiopathy: 86% versus 79%, Fisher exact P = 0.33; Lewy body disease: 49% versus 42%, P = 0.48, respectively), although amygdala-predominant Lewy body disease was more common in early than late onset Alzheimer's disease (22% versus 6%, P = 0.02). In contrast, LATE (35% versus 8%, P < 0.001), hippocampal sclerosis (15% versus 3%, P = 0.02), argyrophilic grain disease (58% versus 41%, P = 0.052), and vascular brain injury (65% versus 39%, P = 0.004) were more common in late than in early onset Alzheimer's disease, respectively. The number of co-pathologies predicted worse cognitive performance at the time of death on Mini-Mental State Examination [1.4 points/pathology (95% confidence interval, CI -2.5 to -0.2) and Clinical Dementia Rating-Sum of Boxes (1.15 point/pathology, 95% CI 0.45 to 1.84)], across early and late onset cohorts. The effect of sex on the number of co-pathologies was not significant (P = 0.17). Prevalence of at least one APOE ε4 allele was similar across the two cohorts (52% and 54%) and was associated with a greater number of co-pathologies (+0.40, 95% CI 0.01 to 0.79, P = 0.047), independent of age of symptom onset, sex, and disease duration. Females showed higher density of neurofibrillary tangles compared to males, controlling for age of onset, APOE ε4, and disease duration. Our findings suggest that non-Alzheimer's disease pathological diagnoses play an important role in the clinical phenotype of early onset Alzheimer's disease with potentially significant implications for clinical practice and clinical trials design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8502474PMC
http://dx.doi.org/10.1093/brain/awab099DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
44
disease
18
lewy body
16
body disease
16
late-onset alzheimer's
12
early-onset alzheimer's
12
cerebral amyloid
12
amyloid angiopathy
12
late onset
12
alzheimer's
11

Similar Publications

Amyloid beta (Aβ) fibrillation kinetics and its impact on membrane polarity.

J Bioenerg Biomembr

January 2025

Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 560-8531, Japan.

Fibrillation of the amyloid beta (Aβ) peptide has often been associated with neurodegenerative pathologies such as Alzheimer's disease. In this study we examined the influence of several potential compositions of the lipid membrane on Aβ fibrillation by using liposomes as a basic model membrane. Firstly, it was revealed that Aβ fibrillation kinetics were enhanced and had the potential to occur at a faster rate on more fluid membranes compared to solid membranes.

View Article and Find Full Text PDF

Resilience mechanisms underlying Alzheimer's disease.

Metab Brain Dis

January 2025

Division of Applied Biomedical Science and Biotechnology, School of Health Science, IMU University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.

Alzheimer's disease (AD) consists of two main pathologies, which are the deposition of amyloid plaque as well as tau protein aggregation. Evidence suggests that not everyone who carries the AD-causing genes displays AD-related symptoms; they might never acquire AD as well. These individuals are referred to as non-demented individuals with AD neuropathology (NDAN).

View Article and Find Full Text PDF

We have previously shown in small studies that full brain Transcranial Radiofrequency Wave Treatment (TRFT) to subjects with Alzheimer's Disease could stop and reverse their cognitive decline. An 8-emitter head device, the "MemorEM", was used in these studies to provide TRFT at 915 MHz frequency and power level of 1.6 W/kg Specific Absorption Rate (SAR) during daily 1-hour treatments.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a prototypical neurodegenerative disorder, predominantly affecting individuals in the presenile and elderly populations, with an etiology that remains elusive. This investigation aimed to elucidate the alterations in anoikis-related genes (ARGs) in the AD brain, thereby expanding the repertoire of biomarkers for the disease. Using publically available gene expression data for the hippocampus from both healthy and AD subjects, differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

Cerebral amyloid angiopathy: one single entity?

Curr Opin Neurol

February 2025

Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.

Purpose Of Review: Cerebral amyloid angiopathy (CAA) is a common brain disorder among the elderly and individuals with Alzheimer's disease, where accumulation of amyloid-ß can lead to intracerebral hemorrhage and dementia. This review discusses recent developments in understanding the pathophysiology and phenotypes of CAA.

Recent Findings: CAA has a long preclinical phase starting decades before symptoms emerge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!