Subgroup Invariant Perturbation for Unbiased Pre-Trained Model Prediction.

Front Big Data

Department of Computer Science and Engineering, Indian Institute of Technology Jodhpur, Rajasthan, India.

Published: February 2021

Modern deep learning systems have achieved unparalleled success and several applications have significantly benefited due to these technological advancements. However, these systems have also shown vulnerabilities with strong implications on the fairness and trustability of such systems. Among these vulnerabilities, bias has been an . Many applications such as face recognition and language translation have shown high levels of bias in the systems towards particular demographic sub-groups. Unbalanced representation of these sub-groups in the training data is one of the primary reasons of biased behavior. To address this important challenge, we propose a two-fold contribution: a bias estimation metric termed as to jointly measure the bias in model prediction and the overall model performance. Secondly, we propose a novel bias mitigation algorithm which is inspired from adversarial perturbation and uses the PSE metric. The mitigation algorithm learns a single uniform perturbation termed as which is added to the input dataset to generate a transformed dataset. The transformed dataset, when given as input to the pre-trained model reduces the bias in model prediction. Multiple experiments performed on four publicly available face datasets showcase the effectiveness of the proposed algorithm for race and gender prediction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931871PMC
http://dx.doi.org/10.3389/fdata.2020.590296DOI Listing

Publication Analysis

Top Keywords

model prediction
12
pre-trained model
8
systems vulnerabilities
8
bias model
8
mitigation algorithm
8
transformed dataset
8
bias
6
model
5
subgroup invariant
4
invariant perturbation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!