Starting from an analysis of frequently employed definitions of big data, it will be argued that, to overcome the intrinsic weaknesses of big data, it is more appropriate to define the object in relational terms. The excessive emphasis on volume and technological aspects of big data, derived from their current definitions, combined with neglected epistemological issues gave birth to an objectivistic rhetoric surrounding big data as implicitly neutral, omni-comprehensive, and theory-free. This rhetoric contradicts the empirical reality that embraces big data: (1) data collection is not neutral nor objective; (2) exhaustivity is a mathematical limit; and (3) interpretation and knowledge production remain both theoretically informed and subjective. Addressing these issues, big data will be interpreted as a methodological revolution carried over by evolutionary processes in technology and epistemology. By distinguishing between forms of nominal and actual access, we claim that big data promoted a new digital divide changing stakeholders, gatekeepers, and the basic rules of knowledge discovery by radically shaping the power dynamics involved in the processes of production and analysis of data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931920 | PMC |
http://dx.doi.org/10.3389/fdata.2020.00031 | DOI Listing |
Methods Mol Biol
January 2025
Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy.
The final aim of metabolomics is the comprehensive and holistic study of the metabolome in biological samples. Therefore, the use of instruments that enable the analysis of metabolites belonging to various chemical classes in a wide range of concentrations is essential, without compromising on robustness, resolution, sensitivity, specificity, and metabolite annotation. These characteristics are crucial for the analysis of very complex samples, such as wine, whose metabolome is the result of the sum of metabolites derived from grapes, yeast(s), bacteria(s), and chemical or physical modification during winemaking.
View Article and Find Full Text PDFElife
January 2025
Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.
Given the rapid cross-country spread of SARS-CoV-2 and the resulting difficulty in tracking lineage spread, we investigated the potential of combining mobile service data and fine-granular metadata (such as postal codes and genomic data) to advance integrated genomic surveillance of the pandemic in the federal state of Thuringia, Germany. We sequenced over 6500 SARS-CoV-2 Alpha genomes (B.1.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Introduction: Deciphering the diverse molecular mechanisms in living Alzheimer's disease (AD) patients is a big challenge but is pivotal for disease prognosis and precision medicine development.
Methods: Utilizing an optimal transport approach, we conducted graph-based mapping of transcriptomic profiles to transfer AD subtype labels from ROSMAP monocyte samples to ADNI and ANMerge peripheral blood mononuclear cells. Subsequently, differential expression followed by comparative pathway and diffusion pseudotime analysis were applied to each cohort to infer the progression trajectories.
J Clin Endocrinol Metab
January 2025
Department of Growth and Development, Capital Institute of Pediatrics, Beijing, China.
Context: Bone age assessment (BAA) is critical for pediatric endocrinology. Traditional methods are complex and time-consuming, and current computer-aided systems have made progress but still lacking in robustness.
Objective: Develop simplified BAA methods to aid pediatricians in quick clinical assessments.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!