With the world population projected to grow significantly over the next few decades, and in the presence of additional stress caused by climate change and urbanization, securing the essential resources of food, energy, and water is one of the most pressing challenges that the world faces today. There is an increasing priority placed by the United Nations (UN) and US federal agencies on efforts to ensure the security of these critical resources, understand their interactions, and address common underlying challenges. At the heart of the technological challenge is . The aim of this special publication is the focus on big data science for food, energy, and water systems (FEWSs). We describe a research methodology to frame in the FEWS context, including decision tools to aid policy makers and non-governmental organizations (NGOs) to tackle specific UN Sustainable Development Goals (SDGs). Through this exercise, we aim to improve the "supply chain" of FEWS research, from gathering and analyzing data to decision tools supporting policy makers in addressing FEWS issues in specific contexts. We discuss prior research in each of the segments to highlight shortcomings as well as future research directions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931953PMC
http://dx.doi.org/10.3389/fdata.2020.00013DOI Listing

Publication Analysis

Top Keywords

food energy
12
energy water
12
big data
8
decision tools
8
policy makers
8
leveraging big
4
data analytics
4
analytics improve
4
improve food
4
water system
4

Similar Publications

Surface enzyme-polymerization endows Janus hydrogel tough adhesion and regenerative repair in penetrating orocutaneous fistulas.

Nat Commun

December 2024

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.

Penetrating orocutaneous or oropharyngeal fistulas (POFs), severe complications following unsuccessful oral or oropharyngeal reconstruction, remain complex clinical challenges due to lack of supportive tissue, contamination with saliva and chewed food, and dynamic oral environment. Here, we present a Janus hydrogel adhesive (JHA) with asymmetric functions on opposite sides fabricated via a facile surface enzyme-initiated polymerization (SEIP) approach, which self-entraps surface water and blood within an in-situ formed hydrogel layer (RL) to effectively bridge biological tissues with a supporting hydrogel (SL), achieving superior wet-adhesion and seamless wound plugging. The tough SL hydrogel interlocked with RL dissipates energy to withstand external mechanical stimuli from continuous oral motions like chewing and swallowing, thus reducing stress-induced damage.

View Article and Find Full Text PDF

Bridged emulsion gels from polymer-nanoparticle enabling large-amount biomedical encapsulation and functionalization.

Nat Commun

December 2024

Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.

Large-amount encapsulation and subsequent expressing are common characteristics for many biomedical applications, such as cosmetic creams and medical ointments. Emulsion gels can accomplish that, but often undergo exclusive, complex, multiple synthesis steps, showing extremely laborious and non-universal. The method here is simple via precisely interfacial engineering in homogenizing a nanoparticle aqueous dispersion and a polymer oil solution, gaining interfacial 45° three-phase-contact-angle for the nanoparticle that can bridge across oil emulsions' interfaces and ultimately form interconnected macroscopic networks.

View Article and Find Full Text PDF

The mechanisms underlying the impact of probiotic supplementation on health remain largely elusive. While previous studies primarily focus on the discovery of novel bioactive bacteria and alterations in the microbiome environment to explain potential probiotic effects, our research delves into the role of living Lactiplantibacillus (formerly known as Lactobacillus) and their conditioned media, highlighting that only the former, not dead bacteria, enhance the healthspan of Caenorhabditis elegans (C. elegans).

View Article and Find Full Text PDF

Black oilseed crops are rich in diverse phenolic compounds and have excellent antioxidant activities, as reported in traditional Chinese medicine. Testa (seed coat) and peeled seeds (cotyledon, embryo, and other structures) are the seed's crucial components, contributing to the variation in phytonutrient, phenol content, bioactive component, and protective and pharmacological effects. However, comprehensive and comparative information on total phenol, flavonoid, antioxidant, and metabolic profiles in black seed testa and peeled sesame, soybean, peanut, and rapeseed seeds is rare.

View Article and Find Full Text PDF

The aim of this study was to investigate the effects of ultrasound at two different frequencies, namely 30 kHz and 42 kHz, on various aspects of industrial Iranian honey, including its physical, biochemical, antioxidant and antimicrobial properties. Samples were subjected to ultrasound treatment at 30 kHz or 42 kHz for a duration of 1, 5 or 10 minutes at temperatures of 20 °C or 45 °C, respectively. The following parameters were then evaluated on days 1, 30, 90, and 180: HMF content, pH, acidity, proline concentration, total number of aerobic mesophilic bacteria, diastase activity, moisture content, sucrose concentration, fructose concentration, glucose concentration, fructose- glucose ratio, ABTS (antioxidant activity) content, number of osmophiles, phenol concentration, reducing sugar concentration and total sugar concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!