Cardiovascular disease is the leading cause of death and disability worldwide. Despite advances in cardiovascular therapy, mortality in heart disease still remains high. Direct cardiac reprogramming is a promising approach for cardiac tissue repair involving in situ generation of new cardiomyocytes from endogenous cardiac fibroblasts. Although, initially, the reprogramming efficiency was low, several developments in reprogramming methods have improved the in vitro cardiac reprogramming efficiency. Subsequently, in vivo cardiac reprogramming has demonstrated improvement in cardiac function and fibrosis after myocardial infarction. Here, we review recent progress in cardiac reprogramming as a new technology for cardiac regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897695PMC
http://dx.doi.org/10.1253/circrep.CR-19-0104DOI Listing

Publication Analysis

Top Keywords

cardiac reprogramming
16
cardiac
9
direct cardiac
8
cardiac fibroblasts
8
reprogramming efficiency
8
reprogramming
6
cardiac reprogramming -
4
reprogramming - converting
4
converting cardiac
4
fibroblasts cardiomyocytes
4

Similar Publications

Leptin drives glucose metabolism to promote cardiac protection via OPA1-mediated HDAC5 translocation and Glut4 transcription.

Funct Integr Genomics

January 2025

Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China.

Metabolic reprogramming, the shifting from fatty acid oxidation to glucose utilization, improves cardiac function as heart failure (HF) progresses. Leptin plays an essential role in regulating glucose metabolism. However, the crosstalk between leptin and metabolic reprogramming is poorly understood.

View Article and Find Full Text PDF

Purpose: Major cardiovascular surgery imposes high physiologic stress, often causing severe organ dysfunction and poor outcomes. The underlying mechanisms remain unclear. This study investigated metabolic changes induced by major cardiovascular surgery and the potential role of identified metabolic signatures in postoperative acute kidney injury (AKI).

View Article and Find Full Text PDF

Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.

View Article and Find Full Text PDF

Decoding the Epigenetic and Transcriptional Basis of Direct Cardiac Reprogramming.

Stem Cells

January 2025

Department of Biomedical Engineering, Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham.

Heart disease, particularly resulting from myocardial infarction (MI), continues to be a leading cause of mortality, largely due to the limited regenerative capacity of the human heart. Current therapeutic approaches seek to generate new cardiomyocytes from alternative sources. Direct cardiac reprogramming, which converts fibroblasts into induced cardiomyocytes (iCMs), offers a promising alternative by enabling in situ cardiac regeneration and minimizing tumorigenesis concerns.

View Article and Find Full Text PDF

Background: Zinc finger proteins (ZNFs) have been proved to play important roles in driving the progression of breast cancer (BC), one of the most common cancers among women. This study aimed to investigate the involvement of zinc-finger SWIM domain-containing protein 3 () in promoting BC cell progression by regulating lipid metabolism.

Methods: Differential expression of in BC was confirmed by comparing its expression in normal human mammary epithelial cells and BC cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!