Drug discovery and efficacy in cancer treatments are limited by the inability of pre-clinical models to predict successful outcomes in humans. Limitations remain partly due to their lack of a physiologic tumor microenvironment (TME), which plays a considerable role in drug delivery and tumor response to therapy. Chemotherapeutics and immunotherapies rely on transport through the vasculature, via the smallest capillaries and stroma to the tumor, where passive and active transport processes are at play. Here, a 3D vascularized tumor on-chip is used to examine drug delivery in a relevant TME within a large bed of perfusable vasculature. This system demonstrates highly localized pathophysiological effects of two tumor spheroids (Skov3 and A549) which cause significant changes in vessel density and barrier function. Paclitaxel (Taxol) uptake is examined through diffusivity measurements, functional efflux assays and accumulation of the fluorescent-conjugated drug within the TME. Due to vascular and stromal contributions, differences in the response of vascularized tumors to Taxol (shrinkage and CD44 expression) are apparent compared with simpler models. This model specifically allows for examination of spatially resolved tumor-associated endothelial dysfunction, likely improving the representation of drug distribution, and has potential for development into a more predictable model of drug delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939067PMC
http://dx.doi.org/10.1002/adfm.202002444DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
vascularized tumor
8
model drug
8
drug
7
tumor
6
endothelial regulation
4
regulation drug
4
drug transport
4
transport vascularized
4
tumor model
4

Similar Publications

Background: YYD601 is a new dual delayed-release formulation of esomeprazole, developed to enhance plasma exposure and prolong the duration of acid suppression.

Purpose: This study aimed to evaluate the safety, pharmacokinetic (PK), and pharmacodynamic (PD) profiles of YYD601 20 mg following single and multiple oral administrations in healthy, fasting adult Koreans, and to compare these outcomes to those of the conventional esomeprazole 20 mg capsule.

Methods: A randomized, open-label, two-period crossover study was conducted in 28 participants, who were divided into two treatment groups: one group received YYD601 20 mg, and the other received conventional esomeprazole 20 mg, once daily for five consecutive days.

View Article and Find Full Text PDF

Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein and a viable target for cardioprotection against myocardial ischaemia-reperfusion injury. Here, we reported a novel Drp1 inhibitor (DRP1i1), delivered using a cardiac-targeted nanoparticle drug delivery system, as a more effective approach for achieving acute cardioprotection. DRP1i1 was encapsulated in cubosome nanoparticles with conjugated cardiac-homing peptides (NanoDRP1i1) and the encapsulation efficiency was 99.

View Article and Find Full Text PDF

Overcoming drug resistance through extracellular vesicle-based drug delivery system in cancer treatment.

Cancer Drug Resist

December 2024

Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China.

Drug resistance is a major challenge in cancer therapy that often leads to treatment failure and disease relapse. Despite advancements in chemotherapeutic agents and targeted therapies, cancers often develop drug resistance, making these treatments ineffective. Extracellular vesicles (EVs) have gained attention for their potential applications in drug delivery because of their natural origin, biocompatibility, and ability to cross biological barriers.

View Article and Find Full Text PDF

Hyaluronic acid/silk fibroin nanoparticles loaded with methotrexate for topical treatment of psoriasis.

Int J Pharm X

June 2025

State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China.

Systemic administration of methotrexate (MTX), widely regarded as one of the most effective treatments for psoriasis, poses significant challenges due to its high toxicity, limited solubility, and potential for adverse effects. Consequently, developing a topical form of MTX may offer a safer and more effective strategy for psoriasis management. Silk fibroin (SF), a protein-based biomacromolecule, has shown considerable promise as a nanocarrier for sustained and targeted drug delivery, owing to its exceptional physicochemical and biological properties.

View Article and Find Full Text PDF

Tenofovir alafenamide (TAF) is currently administered orally to patients for treatment of chronic hepatitis B virus infection and as a part of a combination therapy for human immunodeficiency virus (HIV) infection. A long-acting delivery system could provide several advantages as a formulation strategy for this drug including improved patient adherence, convenience, more consistent drug levels and potentially fewer side effects. To date, the vast majority of polymer-based long-acting delivery systems have been prepared from poly(lactide--glycolide) [1].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!