Iron (Fe) deficiency in plants hinders growth and yield. Thus, this study aims to elucidate the responses and molecular characterization of genes in Fe-deficient sunflower. The study was conducted on 14 days-old sunflower plants cultivated in hydroponic culture under Fe-sufficient and Fe-deficient conditions. The Fe-starved sunflower showed substantial decrease in plant biomass, SPAD score, quantum yield efficiency of PSII (Fv/Fm), photosynthetic performance index (Pi_ABS). Further, Fe shortage reduced Fe and Zn concentrations in roots and shoots, accompanied by a marked decrease of HaNramp1 and HaZIP1 expression in roots, suggesting the association of Zn status contributing to photosynthetic inefficiency in sunflower. The ferric chelate reductase (FCR) activity, along with HaFRO2 and HaIRT1 transcripts, were constitutively expressed, suggesting that sunflower plants can regulate FCR activity, although the lack of bioavailable Fe in the rhizosphere strongly corresponds to the limited Fe uptake in sunflower. The substantial increase of proton extrusion in roots and the localization of Fe-related genes in the plasma membrane are also evident in sunflower as common responses to Fe-deficiency by this Strategy I plant species. Analysis showed that three motifs of Fe-related proteins were linked to the ZIP zinc transporter. The interactome map revealed the close partnership of these Fe-related genes in addition to FRU gene encoding putative transcription factor linked to Fe uptake response. The cis-regulatory analysis of promoter suggested the involvement of auxin, salicylic acid, and methyl jasmonate-responsive elements in the regulatory process in response to Fe deficiency. These findings may be beneficial to develop Fe-efficient sunflower plants through breeding or genome editing approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947006 | PMC |
http://dx.doi.org/10.1038/s41598-021-85147-z | DOI Listing |
Plant Dis
January 2025
USDA-ARS North Central Agricultural Research Laboratory, Brookings, South Dakota, United States;
Soilborne diseases are persistent problems in soybean production. Long-term crop rotation can contribute to soilborne disease management. However, the response of soilborne pathogens to crop rotation is inconsistent, and rotation efficacy is highly variable.
View Article and Find Full Text PDFBr J Nutr
January 2025
Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, The Netherlands.
Understanding protein fermentation in the hindgut of pigs is essential due to its implications for health, and ileal digesta is commonly used to study this process . This study aimed to assess the feasibility of utilizing digested residues as a replacement for ileal digesta in evaluating the protein fermentation potential. residues from cottonseed meal, maize germ meal, peanut meal, rapeseed cake, rapeseed meal, soybean meal and sunflower meal were analysed using a modified gas production (GP) technique and curve fitting model to determine their fermentation dynamics and compare with the use of ileal digesta.
View Article and Find Full Text PDFFoods
January 2025
Department of Pharmacognosy, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timişoara, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania.
There is a growing need for safer alternatives to synthetic additives commonly used in lipophilic carriers for products such as foods, pharmaceuticals, personal care items, and cosmetics. Natural antioxidants, which prevent lipid peroxidation while providing additional health benefits, offer a promising solution. Evening primrose oil, a rich source of antioxidant compounds with numerous biological benefits, emerges as a potential natural preservative for oil-based products.
View Article and Find Full Text PDFBMC Microbiol
January 2025
USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA.
Background: Pseudomonas syringae pv. tagetis (Pstag) causes apical chlorosis on sunflower and various other plants of the Asteraceae family. Whole genome sequencing of Pstag strain EB037 and transposon-mutant derivatives, no longer capable of causing apical chlorosis, was conducted to improve understanding of the molecular basis of disease caused by this pathogen.
View Article and Find Full Text PDFJ Appl Oral Sci
January 2025
Universidade Federal Fluminense, Instituto de Saúde de Nova Friburgo, Departamento de Clínica Odontológica, Nova Friburgo, Rio de Janeiro, Brasil.
Aim: To evaluate the clinical effectiveness of ozonated sunflower oil (Oz) as an adjunctive of non-surgical periodontal therapy in patients with type 2 diabetes mellitus (DM2), on fibroblast cell viability and migration and the effectiveness of Oz on a Candida albicans (C. albicans) culture.
Methodology: In total, 32 sites in 16 DM2 with moderate to advanced periodontal disease with periodontal pocket depths ≥5mm were selected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!