Sodium benzoate is one of the widely used food preservatives and its metabolism in the human body has been studied only with the host perspective. Despite the human gut microbiome being considered as a virtual human organ, its role in benzoate metabolism is yet to be elucidated. The current study uses a multi-omic approach to rationalize the role of human gut microbes in benzoate metabolism. Microbial diversity analysis with multiple features synchronously indicates the dominance of Bacteroidetes followed by Firmicutes, Actinobacteria, and Proteobacteria. Metagenomic exploration highlights the presence of benzoate catabolic protein features. These features were mapped on to the aerobic and anaerobic pathways of benzoate catabolism. Benzoate catabolism assays identified statistically significant metabolites (P < 0.05) associated with the protocatechuate branch of the beta-ketoadipate pathway of the benzoate metabolism. Analysis of the 201 human gut metagenomic datasets across diverse populations indicates the omnipresence of these features. Enrichment of the benzoate catabolic protein features in human gut microbes rationalizes their role in benzoate catabolism, as well as indicates food-derived microbiome evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946887 | PMC |
http://dx.doi.org/10.1038/s41598-021-84964-6 | DOI Listing |
Nutrients
December 2024
Department of Pharmacognosy, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania.
Background/aim: L. () is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of this species and of its main metabolite in improving the streptozotocin-induced damage of hearts and aorta of diabetic rats.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Low-Carbon Transition R&D Department, Korea Institute of Industrial Technology (KITECH), 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si 31056, Republic of Korea.
Protocatechuate acid (PCA) is a phenolic acid naturally synthesized by various organisms. Protocatechuic acid is synthesized by plants for physiological, metabolic functions, and self-defense, but extraction from plants is less efficient compared to the microbial culture process. The microbial synthesis of protocatechuic acid is sustainable and, due to its high yield, can save energy consumption when producing the same amount.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China.
B-box (BBX) transcription factors play crucial roles in plant growth, development, and defense responses to biotic and abiotic stresses. In this study, we cloned a BBX transcription factor gene, from cucumber and analyzed its role in the plant's defense against the feeding of . is expressed throughout all developmental stages in cucumber, with the highest expression in the leaves.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun 130118, China.
Phytophthora root and stem rot caused by () is a globally prevalent oomycete disease. The use of resistant cultivars is an effective and environmentally friendly strategy to manage this disease. It is important to understand the molecular mechanisms underlying the response of (soybean) to infection.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, Poznań University of Life Sciences, 60-637 Poznan, Poland.
This study focused on determining the content of bioactive compounds in selected fruits of wild shrubs. The plants selected for the study were from the Rosaceae and Adoxaceae families. Particular attention should be paid to the fruits of plants commonly growing in Poland (temperate climate), such as , , and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!