Light-emitting diodes (LEDs) of different colors improve plant growth and increase levels of secondary metabolites. This study aimed to determine the effect of red, blue, and red + blue LEDs (1:1) on the secondary metabolites composition in chili, focusing on capsaicinoids, at the top and middle of the plant canopy in 'Super Hot' chili. The accumulated yield of the chili fruit was the highest for control, followed by blue, red and red + blue LEDs, with the top canopy giving twice more yield than the middle canopy. UPLC-MS/MS analysis of chili fruit's methanolic extracts was used to determine capsaicinoids levels. Blue LEDs significantly increased nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin and homodihydrocapsaicin contents by 57 %, 43 %, 56 %, 28 %, and 54 %, respectively, compared to the control. Also, 24 tentatively annotated metabolites, including phenylalanine, cinnamate, and valine, which are involved in the biosynthesis of capsaicinoids, were semi-quantitatively evaluated to determine the impact of LED exposure on the biosynthetic pathway of capsaicinoids. Supplemental blue LED placed at the top and between the canopy may boost the levels of capsaicinoids in chili fruit grown in greenhouses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2021.110826DOI Listing

Publication Analysis

Top Keywords

chili fruit
12
plant growth
8
'super hot'
8
hot' chili
8
secondary metabolites
8
red + blue leds
8
top canopy
8
chili
6
capsaicinoids
5
growth metabolic
4

Similar Publications

Endophytes isolated from seaweeds emerge as promising biocontrol agents against broad spectrum of plant diseases. The endophytic bacteria were isolated from the seaweed (Sargassum wightii) to manage the chilli fruit rot pathogen Fusarium incarnatum. The antifungal activity of the isolated bacteria was tested by dual culture assay and plant growth-promoting activity was also tested by the standard paper towel method.

View Article and Find Full Text PDF

Identification of inheritance and genetic loci responsible for wrinkled fruit surface phenotype in chili pepper () by quantitative trait locus analysis.

Mol Breed

January 2025

Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Minamiminowa, Nagano, 399-4598 Japan.

Unlabelled: The phenotypes of chili pepper () fruit are sometimes characterized by having either smooth or wrinkled surfaces, both of which are commercially important. However, as the inheritance patterns and responsible loci have not yet been identified, it is difficult to control fruit surface traits in conventional chili pepper breeding. To obtain new insights into these aspects, we attempted to clarify the genetic regulation mechanisms responsible for the wrinkled surface of fruit from the Japanese chili pepper 'Shishito' (.

View Article and Find Full Text PDF

[Characteristics of Cd, As, and Pb Pollution in Farmland Soil and Edible Parts of Chili Pepper and Sweet Potato and Their Health Risk Assessment].

Huan Jing Ke Xue

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Ecological Environment of Farmland in Hebei, College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, China.

To clarify the characteristics of Cd, As, and Pb concentrations in edible parts of crops and farmland soils, a key farmland survey was conducted on the field scale to investigate the characteristics of Cd, As, and Pb in soil and chili pepper (edible parts in the above-ground section) and sweet potato (edible parts under the ground) and assess the health risk of Cd-As-Pb in edible parts of chili pepper and sweet potato to humans in the typical co-contaminated agricultural soils by Cd, As, and Pb from metal smelting and sewage irrigation in North China. The results showed that the agricultural soil from chili pepper and sweet potato fields was co-contaminated by Cd and As at a moderate pollution level. The combined pollution index (2.

View Article and Find Full Text PDF

Objective: To analyze the nutritional content of Shanxi's main vegetables and fruits.

Methods: According to the national food safety standards, the nutritional content of 25 vegetables and 38 fruits produced in Shanxi Province from 2018 to 2022 were evaluated for their energy, protein, fat, carbohydrates, vitamins, and minerals.

Results: The contents of energy and carbohydrate of the vegetable samples from high to low were allium, solanum and tender stems, leaves and cauliflower, respectively, The contents of protein from high to low were allium, tender stems, leaves, cauliflower and solanum; The contents of carotene, vitamin B_1, vitamin B_2 and vitamin E in solanaceous vegetables were the highest, and the contents of vitamin C were the tender stems, leaves and cauliflower vegetables.

View Article and Find Full Text PDF

Identification and characterization of crop mutants through molecular marker analysis are imperious to develop desirable traits in mutation breeding programs. In the present study, macromolecular variations with altered morphological, quantitative, and biochemical traits were generated through chemically induced mutagenesis via alkylating agents and heavy metals. Statistical analysis based on quantitative traits indicating enhanced mean value in mutant lines selected from the M generation as compared to previous generations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!