For painless skin penetration, microneedles require optimal geometry due to human skin's inherent elastic properties. The fabrication of desired shape microneedle is very critical. To our knowledge, the polygonal geometry microneedle has not been investigated before. To address this issue, in this communication, we propose a novel cleanroom free fabrication of single metal microneedle with square cross section. The microneedle was fabricated using sputtering technique without any mask or template. The morphological analysis with respect to various sputtering parameters via. Argon (Ar) pipe position, rotating speed, working pressure was discussed in detail. The microneedle geometry, its assisted pain was visualized using finite element analysis (FEM). The theoretical evaluations were subsequently compared with experimentally fabricated microneedle. This is the first step towards more rational design of polygonal microneedle geometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2021.19085 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!