Ocean acidification (OA) can negatively affect early-life stages of marine organisms, with the key processes of larval settlement and metamorphosis potentially vulnerable to reduced seawater pH. Settlement success depends strongly on suitable substrates and environmental cues, with marine biofilms as key settlement inducers for a range of marine invertebrate larvae. This study experimentally investigated (1) how seawater pH determines growth and community composition of marine biofilms, and (2) whether marine biofilms developed under different pH conditions can alter settlement success in the New Zealand serpulid polychaete Galeolaria hystrix. Biofilms were developed under six pH treatments (spanning from 7.0 to 8.1 [ambient]) in a flow-through system for up to 14 months. Biofilms of different ages (7, 10 and 14 months) were used to assay successful settlement of competent G. hystrix larvae reared under ambient conditions. Biofilm microbiomes were characterized through amplicon sequencing of the small subunit ribosomal rRNA gene (16S and 18S). Biofilm community composition was stable over time within each pH treatment and biofilm age did not affect larval settlement selectivity. Seawater pH treatment strongly influenced biofilm community composition, as well as subsequent settlement success when biofilms were presented to competent Galeolaria larvae. Exposure to biofilms incubated under OA-treatments caused a decrease in larval settlement of up to 40% compared to the ambient treatments. We observed a decrease in settlement on biofilms relative to ambient pH for slides incubated at pH 7.9 and 7.7. This trend was reversed at pH 7.4, resulting in high settlement, comparable to ambient biofilms. Settlement decreased on biofilms from pH 7.2, and no settlement was observed on biofilms from pH 7.0. For the first time, we show that long-term incubation of marine biofilms under a wide range of reduced seawater pH treatments can alter marine biofilms in such a way that settlement success in marine invertebrates can be compromised.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2021.105291 | DOI Listing |
Biofilm
June 2025
State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China.
is a prevalent pathogen in both humans and marine species, exhibiting high adaptability to various adverse environmental conditions. Our previous studies have shown that Δ formed three enhanced biofilm types, including spectacular surface-attached biofilm (SB), scattered pellicle biofilm (PB), and colony rugosity. However, the precise mechanism through which regulates biofilm formation has remained unclear.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Biology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Department of Science, The Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK. Electronic address:
Heavy metal pollution is a growing environmental concern as it causes the degradation of wetlands by affecting the organisms at different trophic levels. Shorebirds typically feed on benthic invertebrates including polychaete worms, crustaceans and molluscs. Thus, the assessment of bioconcentration of heavy metals in shorebirds provides an insight into the extent of bioaccumulation of these hazardous metals in the upper trophic levels.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia.
Biodegradation of microplastics facilitated by natural marine biofouling is a promising approach for ocean bioremediation. However, implementation requires a comprehensive understanding of how interactions between the marine microbiome and dominant microplastic debris types (e.g.
View Article and Find Full Text PDFViruses
November 2024
Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China.
is a major global threat to human health, and phage therapy has emerged as a promising strategy for treating infections caused by multidrug-resistant pathogens. In this study, we isolated and characterized a lytic phage, PaTJ, from wastewater. PaTJ belongs to the phage family , and is featured by short latency (30 min) and large burst size (10 PFU per infected cell).
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Water Quality Laboratory, National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300 Seri Kembangan, Selangor, Malaysia.
Plastic pollution in aquatic ecosystems has become a critical global environmental challenge, threatening biodiversity, water quality, and human health. This study investigates macroplastics distribution and characterization in the highly polluted Klang River, Malaysia, and proposes a protocol to compute total macroplastic yield in the river basin. A total of 240 macroplastic items were collected over a 20-km stretch from the river mouth inland, with an average of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!