Cingulum White Matter Integrity as a Mediator Between Harm Avoidance and Hostility.

Neuroscience

Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; The Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia. Electronic address:

Published: May 2021

As a textbook manifestation of an aggressive attitude, hostility can pose a serious threat to both an individual's life and the security of society at large. Past evidence suggests that some anxiety-related traits may be more prone to giving rise to hostility. However, many aspects of hostility, such as, determining the susceptible temperament for hostility, the neural basis of hostility, and the underlying mechanisms through which having a susceptible temperament generates hostility in a healthy brain, remain unclear. In this study, we sought to delve into these questions by assessing temperament and brain white matter integrity using self-report questionnaires and diffusion tensor imaging in a sizable sample of healthy adults (n = 357). First, we investigated the relationship between hostility and the four temperaments of the Cloninger model. Then, we investigated which white matter tracts were significantly correlated with hostility using a whole-brain analysis. Finally, we used a mediation analysis to explore the tripartite relationship between vulnerability temperament, the fractional anisotropy (FA) value of the white matter, and hostility. Our results suggest that a harm avoidance temperament may be susceptible to hostility and that the cingulum may be a key white matter region responsible for hostility. Based on these results, we developed a temperament-brain-attitude pathway showing how harm avoidance temperament could affect the brain and ultimately lead to hostility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2021.02.031DOI Listing

Publication Analysis

Top Keywords

white matter
20
hostility
13
harm avoidance
12
matter integrity
8
susceptible temperament
8
avoidance temperament
8
temperament
6
matter
5
cingulum white
4
integrity mediator
4

Similar Publications

Purpose: To determine whether there is a difference in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values in white matter pathways in the subacute period after COVID-19 infection and to evaluate the correlation between diffusion tensor imaging (DTI) metrics and laboratory findings.

Material And Methods: The study included 64 healthy controls and 91 patients. Patients were classified as group 1 (all patients, n = 91), group 2 (outpatients, n = 58), or group 3 (inpatients, n = 33).

View Article and Find Full Text PDF

Trigeminal nerve microstructure is linked with neuroinflammation and brainstem activity in migraine.

Brain

January 2025

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.

Although the pathophysiology of migraine involves a complex ensemble of peripheral and central nervous system changes that remain incompletely understood, the activation and sensitization of the trigeminovascular system is believed to play a major role. However, non-invasive, in vivo neuroimaging studies investigating the underlying neural mechanisms of trigeminal system abnormalities in human migraine patients are limited. Here, we studied 60 patients with migraine (55 females, mean age ± SD: 36.

View Article and Find Full Text PDF

AI-Assisted Compressed Sensing Enables Faster Brain MRI for the Elderly: Image Quality and Diagnostic Equivalence with Conventional Imaging.

Int J Gen Med

January 2025

School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, People's Republic of China.

Purpose: Conventional brain MRI protocols are time-consuming, which can lead to patient discomfort and inefficiency in clinical settings. This study aims to assess the feasibility of using artificial intelligence-assisted compressed sensing (ACS) to reduce brain MRI scan time while maintaining image quality and diagnostic accuracy compared to a conventional imaging protocol.

Patients And Methods: Seventy patients from the department of neurology underwent brain MRI scans using both conventional and ACS protocols, including axial and sagittal T2-weighted fast spin-echo sequences and T2-fluid attenuated inversion recovery (FLAIR) sequence.

View Article and Find Full Text PDF

From circuits to lifespan: translating mouse and human timelines with neuroimaging based tractography.

J Neurosci

January 2025

Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.

Animal models are commonly used to investigate developmental processes and disease risk, but humans and model systems (e.g., mice) differ substantially in the pace of development and aging.

View Article and Find Full Text PDF

Background: Cerebrospinal fluid (CSF) loss in spontaneous intracranial hypotension (SIH) is accompanied by volume shifts between the intracranial compartments. This study investigated tricompartimental and longitudinal volume shifts after closure of a CSF leak.

Methods: Patients with SIH and suitable pre-therapeutic and post-therapeutic imaging for volumetric analysis were identified from our tertiary care center between 2020 and 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!