Epigenetics is a reversible molecular mechanism that plays a critical role in many developmental, adaptive, and disease processes. DNA methylation has been shown to regulate gene expression and the advent of high throughput technologies has made genome-wide DNA methylation analysis possible. We investigated the effect of DNA methylation on eQTL mapping (methylation-adjusted eQTLs), by incorporating DNA methylation as a SNP-based covariate in eQTL mapping in African American derived hepatocytes. We found that the addition of DNA methylation uncovered new eQTLs and eGenes. Previously discovered eQTLs were significantly altered by the addition of DNA methylation data suggesting that methylation may modulate the association of SNPs to gene expression. We found that methylation-adjusted eQTLs that were less significant compared to PC-adjusted eQTLs were enriched in lipoprotein measurements (FDR=0.0040), immune system disorders (FDR = 0.0042), and liver enzyme measurements (FDR=0.047), suggesting that DNA methylation modulates the genetic regulation of these phenotypes. Our methylation-adjusted eQTL analysis also uncovered novel SNP-gene pairs. For example, we found that the SNP, rs1332018, was associated to GSTM3. GSTM3 expression has been linked to Hepatitis B which African Americans suffer from disproportionately. Our methylation-adjusted method adds new understanding to the genetic basis of complex diseases that disproportionally affect African Americans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958994PMC

Publication Analysis

Top Keywords

dna methylation
32
eqtl mapping
12
african americans
12
methylation
9
methylation eqtl
8
mapping african
8
gene expression
8
methylation-adjusted eqtls
8
addition dna
8
dna
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!