Peri-implantitis is not periodontitis: Scientific discoveries shed light on microbiome-biomaterial interactions that may determine disease phenotype.

Periodontol 2000

Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Anatomía Patológica, Buenos Aires, Argentina & CONICET, Buenos Aires, Argentina.

Published: June 2021

Peri-implantitis is an immune-mediated biological complication that is attributed to bacterial biofilms on the implant surface. As both periodontitis and peri-implantitis have similar inflammatory phenotypes when assessed cross-sectionally, treatment protocols for peri-implantitis were modeled according to those used for periodontitis. However, lack of efficacy of antimicrobial treatments targeting periodontal pathogens coupled with recent discoveries from open-ended microbial investigation studies create a heightened need to revisit the pathogenesis of peri-implantitis compared with that of periodontitis. The tale of biofilm formation on intraoral solid surfaces begins with pellicle formation, which supports initial bacterial adhesion. The differences between implant- and tooth-bound biofilms appear as early as bacterial adhesion commences. The electrostatic forces and ionic bonding that drive initial bacterial adhesion are fundamentally different in the presence of titanium dioxide or other implant alloys vs mineralized organic hydroxyapatite, respectively. Moreover, the interaction between metal surfaces and the oral environment leads to the release of implant degradation products into the peri-implant sulcus, which exposes the microbiota to increased environmental stress and may alter immune responses to bacteria. Clinically, biofilms found in peri-implantitis are resistant to beta-lactam antibiotics, which are effective against periodontal communities even as monotherapies and demonstrate a composition different from that of biofilms found in periodontitis; these facts strongly suggest that a new model of peri-implant infection is required.

Download full-text PDF

Source
http://dx.doi.org/10.1111/prd.12372DOI Listing

Publication Analysis

Top Keywords

bacterial adhesion
12
initial bacterial
8
peri-implantitis
6
peri-implantitis periodontitis
4
periodontitis scientific
4
scientific discoveries
4
discoveries light
4
light microbiome-biomaterial
4
microbiome-biomaterial interactions
4
interactions determine
4

Similar Publications

Physicochemical Characterization of Gallstone Surfaces to Predict Their Interaction with Salmonella Typhi.

Curr Microbiol

January 2025

Industrial and Surface Engineering Laboratory, Bioprocess and Biointerfaces Team, Department of Life Sciences, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco.

Salmonella Typhi can adhere to and build biofilms on the surface of gallstones causing abnormal gallbladder mucosa, which could lead to carcinogenesis. The surface physicochemical properties of microbial cells and materials have been shown to play a crucial role in adhesion. Therefore, the purpose of this study was to investigate, for the first time, the surface properties of nine gallstones and to evaluate the influence of these parameters on the theoretical adhesion of S.

View Article and Find Full Text PDF

Public transport represents a potential site for the transmission of resistant pathogens due to the rapid movement of large numbers of people. This study aimed to investigate the bacterial contamination of frequently touched surfaces in the public transport system operating in the proximity of the biggest Czech hospital during the coronavirus pandemic despite extensive cleaning and disinfection efforts. In June and September 2020, samples from the metro trains, ground transport and stationary objects were collected, enriched and cultured.

View Article and Find Full Text PDF

Objective:  Continuous advancements in composite resin materials have revolutionized and expanded its clinical use, improving its physical and mechanical properties. Attaining and retaining surface texture and gloss are crucial for the long-term durability of the composite resin material. This study investigated the supra-nanospherical filler composite material compared with different composite resin materials immersed in different beverages.

View Article and Find Full Text PDF

Dental implant coronal surfaces designed with the primary goal of maintaining crestal bone levels may also promote bacterial adhesion, leading to soft tissue inflammation and peri-implant bone loss. Achieving an optimal surface roughness that minimizes bacterial adhesion while preserving crestal bone is crucial. It is hypothesized that a specific threshold surface roughness value may exist below which, and above which, initial bacterial adhesion does not statistically change.

View Article and Find Full Text PDF

Background: Although surface finishing processes are effective against Streptococcus mutans biofilm, the mechanism of action of saliva with different acidity values ​​has not been studied in detail. This study aims to produce four different all-ceramic materials in a single session with CAD/CAM devices and apply two different surface finishing processes, glazing and polishing, and then determine the retention of Streptococcus mutants on the surfaces of the materials in saliva with varying levels of acidity.

Methods: Zirconia-reinforced lithium silicate (Vita Suprinity, Vita Zahnfabrik, Bad Saöckingen, Germany), monochromatic feldspar (Vitablocs Mark 2, Vita Zahnfabrik, Bad Saöckingen, Germany), leucite glass ceramic (IPS Empress CAD, Ivoclar Vivadent, Liechtenstein), and monolithic zirconia (Incoris TZI (Cerec) Sirona, Germany) were used in the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!