Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Laser-induced breakdown spectroscopy (LIBS) has been utilized for in situ diagnostics of the laser welding process. The influence of different weld spot areas (melt pool, solid weld) on LIBS signals and plasma properties has been studied in detail. Liquid metal sampling and high target surface temperature of the melt enhance LIBS plasma intensity and increase plasma temperature. The influence of laser welding process parameters on LIBS measurements has been studied in order to differentiate optimal and defective laser welding. In case of defective laser welding, the melt pool was intensively boiling, so we have observed greater LIBS signals but poor reproducibility. For the first time, the LIBS technique was demonstrated to detect defective laser welding during in situ measurements utilizing atomic and ionic line comparison by paired sample t-test hypotheses testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.411359 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!