Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vacuum chambers are frequently used in high-energy, high-peak-power laser systems to prevent deleterious nonlinear effects, which can result from propagation in air. In the vacuum sections of the Allegra laser system at ELI-Beamlines, we observed degradation of several optical elements due to laser-induced contamination (LIC). This contamination is present on surfaces with laser intensity above 30/ with wavelengths of 515, 800, and 1030 nm. It can lead to undesired absorption on diffraction gratings, mirrors, and crystals and ultimately to degradation of the laser beam profile. Because the Allegra laser is intended to be a high-uptime source for users, such progressive degradation is unacceptable for operation. Here, we evaluate three methods of removing LIC from optics in vacuum. One of them, the radio-frequency-generated plasma cleaning, appears to be a suitable solution from the perspective of operating a reliable, on-demand source for users.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.414878 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!