To circumvent elaborate conventional lithographic methods for realizing metallic nanostructures, it is necessary to develop self-organized nanofabrication methods for suitable template structures and their optical characterization. We demonstrate the potential of ion bombardment with impurity co-deposition to fabricate terraced or quasi-blazed nanostructure templates. Self-organized terraced nanostructures on fused silica were fabricated using ion bombardment with iron impurity co-deposition and subsequent Au shadow deposition. The aspect ratios are enhanced threefold, and the range of nanostructure period variation is significantly increased with respect to that of conventional nanostructures realized by pure ion bombardment. We reveal the key features of the method via atomic force microscopy and optical characterization. Variable-profile quasiperiodic nanostructures with periods of 100-450 nm, heights of 25-180 nm, and blaze angles of 10°-25° were fabricated over an area of 20×40, and these exhibited tunable and broadening optical anisotropy across the nanostructured area. Thus, the proposed method is a viable technique for rapid, cost-effective, and deterministic fabrication of variable nanostructure templates for potential optical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.412631 | DOI Listing |
Nanomaterials (Basel)
December 2024
Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China.
W-doped ZnO (WZO) films were deposited on glass substrates by using RF magnetron sputtering at different substrate bias voltages, and the relationships between microstructure and optical and electrical properties were investigated. The results revealed that the deposition rate of WZO films first decreased from 8.8 to 7.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Intelligent Manufacturing, Luoyang Institute of Science and Technology, Luoyang 471023, China.
(AlCrMoNiTi)N high-entropy alloy nitride (HEAN) films were synthesized at various bias voltages using the co-filter cathodic vacuum arc (co-FCVA) deposition technique. This study systematically investigates the effect of bias voltage on the microstructure and performance of HEAN films. The results indicate that an increase in bias voltage enhances the energy of ions while concomitantly reducing the deposition rate.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, Rio de Janeiro 22451-900, RJ, Brazil.
The effects of cosmic-ray bombardment of chiral molecules in the interstellar medium are simulated in the laboratory by performing radiolysis experiments of pure α-pinene ices at four different temperatures. The identification and significance of α-pinene have not been fully understood because of the insufficient amount of spectral information of these compounds at low temperatures. A comparison of the temperature dependence of the mid-infrared spectra of pure α-pinene ices before and after irradiation its irradiation by 61.
View Article and Find Full Text PDFHeliyon
December 2024
Northwest Institute for Nonferrous Metal Research, Xi'an, 710016, China.
The He irradiation-induced mechanical and microstructural evolutions were studied in NbMoTaW (at.%) and NbMoTaWRe (at.%) refractory high-entropy alloys (RHEAs) films, respectively.
View Article and Find Full Text PDFHigh energy density physics driven by intense heavy ion beams will be an important new project for the high intensity heavy-ion accelerator facility and the Dongjiang Laboratory. This paper presents an experimental investigation of ion beam-induced luminescence in a strong magnetic field background at HIRFL. The experiment utilizes a 430 MeV/u Kr ion beam with a pulse duration of 300 ns to bombard an AlO (Cr) solid target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!