Subsurface damage (SSD) induced during conventional manufacturing of optics contributes mainly to a reduction in the performance and quality of optics. In this paper, we propose the application of full-field optical coherence tomography (FF-OCT) as a high-resolution and nondestructive method for evaluation of SSD in optical substrates. Both ground and polished surfaces can be successfully imaged, providing a path to control SSD throughout the entire optics manufacturing process chain. Full tomograms are acquired for qualitative and quantitative analyses of both surface and SSD. The main requirements for the detection of SSD are addressed. Data processing allows the removal of low-intensity image errors and the automatic evaluation of SSD depths. OCT scans are carried out on destructively referenced glass samples and compared to existing predictive models, validating the obtained results. Finally, intensity projection methods and depth maps are applied to characterize crack morphologies. The experiments highlight differences in crack characteristics between optical glasses SF6 and HPFS7980 and illustrate that wet etching can enhance three-dimensional imaging of SSD with FF-OCT.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!