We have developed an SI-traceable narrow-band tunable radiance source based on an optical parametric oscillator (OPO) and an integrating sphere for the calibration of spectroradiometers. The source is calibrated with a reference detector over the ultraviolet/visible spectral range with an uncertainty of <1. As a case study, a CubeSat spectroradiometer has been calibrated for radiance over its operating range from 370 nm to 480 nm. To validate the results, the instrument has also been calibrated with a traditional setup based on a diffuser and an FEL lamp. Both routes show good agreement within the combined measurement uncertainty. The OPO-based approach could be an interesting alternative to the traditional method, not only because of reduced measurement uncertainty, but also because it directly allows for wavelength calibration and characterization of the instrumental spectral response function and stray light effects, which could reduce calibration time and cost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.417467 | DOI Listing |
Dalton Trans
December 2024
College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, 400065, People's Republic of China.
With many fascinating characteristics, such as color-tunability, narrow-band emission, and low-cost solution processability, all-inorganic lead halide perovskite quantum dots (QDs) have attracted keen attention for electroluminescent light-emitting diodes (QLEDs) and display applications. However, the performance of perovskite QLED devices is intrinsically limited by the inefficient electrical carrier transport capacity. Herein, one facile but effective method is proposed to enhance the perovskite QLED performance by incorporating a short carbon chain ligand of 2-phenethylammonium bromide (PEABr) to passivate the CsPbBr QD surface.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Physics and Meteorology, School of Sciences, Sao Paulo State University (UNESP), Bauru, Sao Paulo 17033-360, Brazil.
The presence of toxic dyes in industrial waste dramatically diminishes the beneficial effects of remediation efforts. To overcome the hazardous impacts of dyes on biodiversity and environment, we integrated polymers into nanoparticles to substantially enhance their functionality and performance. 2 and 4 wt% of chitosan (CS) and 3 wt% of polyacrylic acid (PAA) doped cadmium selenide (CdSe) nanostructures (NSs) were prepared by co-precipitation approach.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
The potential to introduce tunable electrical conductivity and molecular magnetism through carrier doping in metal-organic coordination polymers is particularly promising for nanoelectronics applications. Precise control of the doping level is essential for determining the electronic and magnetic properties. In this study, we present a series of one-dimensional coordination polymers, {(HNEt)[CuCo(L)]} (HNEt = triethylammonium, L = 1,2,4,5-tetrakis(methanesulfonamido)benzene), doped with diamagnetic Cu carriers.
View Article and Find Full Text PDFNanophotonics
July 2024
College of Electronic Engineering, South China Agricultural University, Guangzhou, 510642, China.
Mater Horiz
December 2024
Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
Owing to their unique and tunable optoelectronic and magnetic properties, organic conjugated radicals have great potential in information storage and communication through modulating the molecular spin states. However, few electronic/spintronic devices based on these materials have been reported to date due to various intrinsic constraints such as poor material stability and processability. In this work, we have synthesized a stable singlet ground state organic conjugated diradical 5,7-dimesityl--indaceno[1,2-:7,6-']dipyridine (mNIF) with narrow band gap (1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!