Multi-wavelength radiometric thermometry has a wide application prospect in many fields. However, due to unknown emissivity, the data processing algorithm remains a difficult problem. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is proposed to inverse true temperature and spectral emissivity without assuming the emissivity model. The BFGS algorithm can automatically identify the emissivity models of different trends. These simulation results show that given different initial emissivity has no significant influence on the inverse temperature and emissivity. Then, we select 0.5 as the initial emissivity and carry out the simulation experiments at 800 and 900 K, respectively. The maximum absolute error of temperature is less than 3.5 K and the computation time is less than 0.2 s. Thus, the algorithm has high precision and efficiency. Finally, the verification experiment indicates that the BFGS algorithm is effective and reliable. The proposed method can be applied to real-time temperature measurement in many industrial processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.412269 | DOI Listing |
Phys Chem Chem Phys
November 2024
Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui 230088, China.
In the field of finding ground and excited states, where quantum computation holds significant promise, using a variational quantum eigensolver (VQE) is a typical approach. However, the success of this approach is vulnerable to two factors: classical optimization for the ansätz parameters and noise from quantum devices. To address these challenges, we adopted particle swarm optimization (PSO) based on swarm intelligence for VQE and presented its performance.
View Article and Find Full Text PDFWe present quad-layered structural color filters producing transmissive red (R), green (G), and blue (B) colors with high brightness and high purity, where thicknesses of layers for the RGB colors are optimized by using a L-BFGS-B algorithm. To evaluate the performance of the proposed structural color filters, computer-based inverse designs based on meta-heuristic and reinforcement learning algorithms are employed, where the optical properties obtained from the inverse designs are comparable to those shown in our proposed design. A peak separation phenomenon in dual cavities is applied to make a spectral response rectangular, and also a resonance order is optimally tailored to maximize the transmittance at a resonant wavelength with the suppression of undesired higher-order resonances at the same time for achieving pure colors.
View Article and Find Full Text PDFMaterials (Basel)
September 2024
Guangxi Liuzhou LEGN Technology Co., Ltd., Liuzhou 545000, China.
The initial gap (IG) is frequently occurring in the process of resistance spot welding (RSW) for automotive body-in-white structures. It is an inevitable challenge that the RSW with IG can negatively impact the welding quality, subsequently reducing the structural integrity and safety of the vehicle. This research aims to study the influence of the IG on RSW mechanical behaviors based on the refined finite element model (FEM) of RSW with different IGs under tensile shear load.
View Article and Find Full Text PDFJ Phys Chem A
October 2024
Department of Chemistry, Rice University, Houston, Texas 77005, United States.
Solving the electronic Schrodinger equation for strongly correlated ground states is a long-standing challenge. We present quantum algorithms for the variational optimization of wave functions correlated by products of unitary operators, such as Local Unitary Cluster Jastrow (LUCJ) ansatzes, using stochastic reconfiguration (SR) and the linear method (LM). While an implementation on classical computing hardware would require exponentially growing compute cost, the cost (number of circuits and shots) of our quantum algorithms is polynomial in system size.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
September 2024
AutoDock Vina and its derivatives have established themselves as a prevailing pipeline for virtual screening in contemporary drug discovery. Our Vina-GPU method leverages the parallel computing power of GPUs to accelerate AutoDock Vina, and Vina-GPU 2.0 further enhances the speed of AutoDock Vina and its derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!