Both innate and adaptive immune cells are critical players in autoimmune destruction of insulin-producing β cells in type 1 diabetes. However, the early pathogenic events triggering the recruitment and activation of innate immune cells in islets remain obscure. Here we show that circulating fatty acid binding protein 4 (FABP4) level was significantly elevated in patients with type 1 diabetes and their first-degree relatives and positively correlated with the titers of several islet autoantibodies. In nonobese diabetic (NOD) mice, increased FABP4 expression in islet macrophages started from the neonatal period, well before the occurrence of overt diabetes. Furthermore, the spontaneous development of autoimmune diabetes in NOD mice was markedly reduced by pharmacological inhibition or genetic ablation of FABP4 or adoptive transfer of FABP4-deficient bone marrow cells. Mechanistically, FABP4 activated innate immune responses in islets by enhancing the infiltration and polarization of macrophages to proinflammatory M1 subtype, thus creating an inflammatory milieu required for activation of diabetogenic CD8+ T cells and shift of CD4+ helper T cells toward Th1 subtypes. These findings demonstrate FABP4 as a possible early mediator for β cell autoimmunity by facilitating crosstalk between innate and adaptive immune cells, suggesting that pharmacological inhibition of FABP4 may represent a promising therapeutic strategy for autoimmune diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8119222 | PMC |
http://dx.doi.org/10.1172/jci.insight.141814 | DOI Listing |
Introduction: The most frequent form of diabetes in pediatric patients is polygenic autoimmune diabetes (T1D), but single-gene variants responsible for autoimmune diabetes have also been described. Both disorders share clinical features, which can lead to monogenic forms being misdiagnosed as T1D. However, correct diagnosis is crucial for therapeutic choice, prognosis and genetic counseling.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Visual Informatics, The National University of Malaysia (UKM), Bangi, Malaysia.
Patients with type 1 diabetes and their physicians have long desired a fully closed-loop artificial pancreas (AP) system that can alleviate the burden of blood glucose regulation. Although deep reinforcement learning (DRL) methods theoretically enable adaptive insulin dosing control, they face numerous challenges, including safety and training efficiency, which have hindered their clinical application. This paper proposes a safe and efficient adaptive insulin delivery controller based on DRL.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
Type 1 diabetes (T1D) is an autoimmune disorder in which pancreatic β-cells are destroyed by CD8 T cells. Anti-CD3 antibody effectively treats early-stage T1D when β-cell autoantibodies are detected but before symptoms appear. However, it impairs the immune system temporarily, exposing individuals to infection.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University, School of Chemistry and Chemical Engineering, CHINA.
T cells play a pivotal role in the development of autoimmune diseases. To mitigate autoimmune inflammation without inducing global immunosuppression, it is crucial to selectively eliminate autoreactive T cell clones while preserving the normal T cell repertoire. In this study, we applied cellular proximity chemistry to develop a T-cell depletion method with clonal precision.
View Article and Find Full Text PDFIr J Med Sci
January 2025
Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Predio Canoas 100, Col. Los Angeles, Durango, 34077, México.
Background: It has been revealed that the potential utility of the triglycerides and glucose (TyG) index as an effective option for assessing glycemic control; however, evidence in this field is still scarce.
Aims: The goal of this study was to investigate the diagnostic accuracy of the TyG index, as an alternative option, to detect inadequate glycemic control in patients with type 2 diabetes (T2D).
Methods: Men and women between 30 and 60 years of age diagnosed with type 2 diabetes were included in a cross-sectional study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!