Purpose: The authors evaluated changes in intermuscular coherence (IMC) of orofacial and speech breathing muscles across phase of speech production in healthy younger and older adults.

Method: Sixty adults (30 younger = M: 26.97 year; 30 older = M: 66.37 year) read aloud a list of 40 words. IMC was evaluated across phase: preparation (300 ms before speech onset), initiation (300 ms after onset), and total execution (entire word).

Results: Orofacial IMC was lowest in the initiation, higher in preparation, and highest for the total execution phase. Chest wall IMC was lowest for the preparation and initiation and highest for the total execution phase. Despite age-related differences in accuracy, neuromuscular modulation for phase was similar between groups.

Conclusion: These results expand our knowledge of speech motor control by demonstrating that IMC is sensitive to phase of speech planning and production.

Download full-text PDF

Source
http://dx.doi.org/10.1123/mc.2020-0003DOI Listing

Publication Analysis

Top Keywords

phase speech
12
total execution
12
changes intermuscular
8
intermuscular coherence
8
speech production
8
imc lowest
8
highest total
8
execution phase
8
phase
7
speech
6

Similar Publications

Background: Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits.

View Article and Find Full Text PDF

Neural correlates of perceptual plasticity in the auditory midbrain and thalamus.

J Neurosci

January 2025

Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742.

Hearing is an active process in which listeners must detect and identify sounds, segregate and discriminate stimulus features, and extract their behavioral relevance. Adaptive changes in sound detection can emerge rapidly, during sudden shifts in acoustic or environmental context, or more slowly as a result of practice. Although we know that context- and learning-dependent changes in the sensitivity of auditory cortical (ACX) neurons support many aspects of perceptual plasticity, the contribution of subcortical auditory regions to this process is less understood.

View Article and Find Full Text PDF

Individual differences elucidate the perceptual benefits associated with robust temporal fine-structure processing.

Proc Natl Acad Sci U S A

January 2025

Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA 15213.

The auditory system is unique among sensory systems in its ability to phase lock to and precisely follow very fast cycle-by-cycle fluctuations in the phase of sound-driven cochlear vibrations. Yet, the perceptual role of this temporal fine structure (TFS) code is debated. This fundamental gap is attributable to our inability to experimentally manipulate TFS cues without altering other perceptually relevant cues.

View Article and Find Full Text PDF

Aim: The perspectives and practices of healthcare professionals regarding ototoxicity in individuals with head and neck cancers are important for the implementation of ototoxicity monitoring. The current study aims to explore the oncologist's awareness and perspectives of ototoxicity and ototoxicity monitoring for individuals with head and neck cancer in a South-Indian district, using qualitative semi-structured interviews.

Method: The COnsolidated criteria for REporting Qualitative research (COREQ) Checklist was used to guide the method of the current qualitative study.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) brains commonly exhibit various co-morbid pathologies, with cerebral amyloid angiopathy (CAA) being the most prevalent, affecting 70-90% of patients. CAA can be restricted to medium and large vessels or extend to capillaries. Additionally, AD patients often show pathologies involving phosphorylated-TDP-43 (pTDP-43) and alpha-synuclein (αSyn), typically demonstrating an amygdala-predominant subtype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!