Researchers have found that the walking economy can be enhanced by recycling ankle metabolic energy using an unpowered ankle exoskeleton. However, how to regulate multiarticular energy to enhance the overall energy efficiency of humans during walking remains a challenging problem, as multiarticular passive assistance is more likely to interfere with the human body's natural biomechanics. Here we show that the metabolic energy of the hip and knee musculature can be regulated to a more energy-effective direction using a multiarticular unpowered exoskeleton that recycles negative mechanical energy of the knee joint in the late swing phase and transfers the stored energy to assist the hip extensors in performing positive mechanical work in the stance phase. The biarticular spring-clutch mechanism of the exoskeleton performs a complementary energy recycling and energy transfer function for hip and knee musculature. Through the phased regulation of the hip and knee metabolic energy, the target muscle activities decreased during the whole assistive period of the exoskeleton, which was the direct reason for 8.6 ± 1.5% (mean ± s.e.m) reduction in metabolic rate compared with that of walking without the exoskeleton. The proposed unpowered exoskeleton enhanced the user's multiarticular energy efficiency, which equals improving musculoskeletal structure by adding a complementary loop for efficient energy recycling and energy transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2021.3065389DOI Listing

Publication Analysis

Top Keywords

metabolic energy
16
energy
13
unpowered exoskeleton
12
hip knee
12
multiarticular unpowered
8
multiarticular energy
8
energy efficiency
8
knee musculature
8
energy recycling
8
recycling energy
8

Similar Publications

The transport of metabolites across the inner mitochondrial membrane (IMM) is crucial for maintaining energy balance and efficient distribution of metabolic intermediates between cellular compartments. Under abiotic stress, mitochondrial function becomes particularly critical, activating complex signaling pathways essential for plant stress responses. These pathways modulate stress-responsive gene expression, influencing key physiological processes such as cell respiration and senescence, helping plants adapt to stress.

View Article and Find Full Text PDF

Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

The developmental lipidome of Nippostrongylus brasiliensis.

Parasit Vectors

January 2025

Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.

Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Background: Metabolic and bariatric surgery (MBS) is a suitable solution for the treatment of morbid obesity. Investigating an MBS method that has the best outcomes has always been the main concern of physicians. The current study aimed to compare nutritional, anthropometric, and psychological complications of individuals undergoing various MBS Techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!