A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phosphorus-modified biochar cross-linked Mg-Al layered double-hydroxide composite for immobilizing uranium in mining contaminated soil. | LitMetric

The decommissioning of uranium mill tailings (UMTs) is usually accompanied by uranium (U) contamination in soil, which poses a serious threat to human health and ecological safety. In this study, a novel phosphorus-modified bamboo biochar (PBC) cross-linked Mg-Al layered double-hydroxide (LDH) composite ("PBC@LDH") was successfully prepared by phosphate pre-impregnation and a hydrothermal method with Mg-Al LDH. Physicochemical analysis revealed that phosphorus-containing functional groups and Mg-Al LDH were grafted onto the pristine biochar (BC) matrix. Laboratory-scale incubation and column leaching experiments were performed on the prepared BC, PBC, and PBC@LDH. The results showed that, at a dosage of 10%, the PBC@LDH composite had a commendable ability to immobilize U in soil. After 40 days of incubation with the stabilizer, the more mobile U was converted into immobilized species. Furthermore, during a column leaching experiment with simulated acid rain, the cumulative loss and leaching efficiency of U were remarkably reduced by PBC@LDH treatment compared with the control, reaching 53% and 54%, respectively. Surface complexation, co-precipitation, and reduction described the adsorption and immobilization mechanisms. In conclusion, this research demonstrates that the PBC@LDH composite offers a potentially effective amendment for the remediation of U contaminated soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.130116DOI Listing

Publication Analysis

Top Keywords

cross-linked mg-al
8
mg-al layered
8
layered double-hydroxide
8
contaminated soil
8
mg-al ldh
8
column leaching
8
pbc@ldh composite
8
phosphorus-modified biochar
4
biochar cross-linked
4
mg-al
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!