Substances with (very) persistent, (very) bioaccumulative, and/or toxic properties (PBT/vPvB) are of environmental concern and are identified via hazard-based PBT-assessment approaches. The PBT-assessment of well-defined substances is optimized over the past decades, but is under development for substances of unknown or variable composition, complex reaction products or biological materials (UVCBs). Particularly, the large number of constituents and variable composition complicate the PBT-assessment of UVCBs. For petroleum UVCBs, the use of the hydrocarbon block method (HBM) is proposed. Within this method, groups of constituents with similar physicochemical properties and structure are treated as a single entity and are expected to have comparable environmental fate and hazard properties. So far, however, there is a lack of experience with the application of the HBM for PBT-assessment purposes. The aim of this study is to investigate the suitability of the HBM for the PBT-assessment of petroleum UVCBs by evaluating the group of alkylated three-ring polycyclic aromatic hydrocarbons (PAHs). The presented approach is based on experimental data and model predictions and followed the guidelines of the European Chemicals Agency. Because of a lack of relevant experimental data, relative trend analyses were applied. The results indicate that alkylated three-ring PAHs are more persistent, bioaccumulative, and toxic than the parent three-ring PAHs. As the parent three-ring PAHs are currently identified within Europe as PBT/vPvB substances, the alkylated three-ring PAHs could also be considered as PBT/vPvB. Accordingly, this case study provides the prospects for the application of the HBM for the PBT-assessment of UVCBs using trend analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.130113 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!