While the influence of climate change on the fate of persistent organic pollutants (POPs) is becoming a topic of global concern, it has yet to be demonstrated how POPs and their transformation products in soil respond to a changing climate at the local scale. We conducted a year-long field experiment with spiked soils to investigate the impact of climate on the dissipation of γ-hexachlorocyclohexane (γ-HCH) and p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) as well as the formation of their products. Four sites along an elevational gradient on the eastern Tibetan Plateau were selected to represent four scenarios ranging from a dry and cold to a warm and humid climate. Based on the measured concentrations of the two pesticides and their transformation products, we calculated the dissipation rates of γ-HCH and p,p'-DDT in soil using two biphasic kinetic models, and the formation rates of transformation products using a mid-point rectangular approximation method. The spiked γ-HCH generally showed the expected decrease in dissipation from soils with increasing altitudes, and therefore decreasing temperature and precipitation, whereas dissipation of p,p'-DDT was influenced more by photolysis and sequestration in soil. The formation rates of the primary products of γ-HCH (i.e. γ-HCH→PeCCH and γ-HCH→TeCCH) and p,p'-DDT (i.e. p,p'-DDT→p,p'-DDE and p,p'-DDT→p,p'-DDD) indicate that a warmer and wetter climate favors dechloroelimination (anaerobic biodegradation) over dehydrochlorination (aerobic biodegradation). The significantly longer dissipation half-lives of γ-HCH at the coldest site suggests that the fate of POPs in frozen regions (e.g. polar regions) needs more attention. Overall, the fate of more volatile chemicals (e.g. γ-HCH) might be more responsive to the climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2021.116824 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Nankai University, College of Chemistry, 94 Weijin Rd., 300071, Tianjin, CHINA.
Reliable methods for rapidly constructing C(sp3)-rich three-dimensional polycycles are in high demand for organic synthesis and medicinal chemistry. Although there are various mature systems for synthesizing five- or six-membered polycycles, a catalytic platform for accessing diverse cycloheptanoid-containing polycyclic scaffolds is lacking. Herein, we describe a method for copper-catalyzed intramolecular 2-aminoallyl cation-diene (4 + 3) cycloaddition reactions.
View Article and Find Full Text PDFLangmuir
January 2025
College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.
Morphology regulation and element doping are effective means to improving the photocatalytic performance of graphite-phase carbon nitride (g-CN). In this article, using melamine and zinc chloride as raw materials, a novel kind of Zn/Cl-doped hollow microtubular g-CN (Zn-HT-CN) by a hydrothermal method was developed. The structure and morphology of Zn-HT-CN and reference samples were characterized by X-ray diffraction patterns (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), etc.
View Article and Find Full Text PDFSmall
January 2025
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
The photocatalytic activity of lead-free perovskite heterostructures currently suffers from low efficiency due to the lack of active sites and the inadequate photogenerated carrier separation, the latter of which is hindered by slow charge transfer at the heterostructure interfaces. Herein, a facile strategy is reported for the construction of lead-free halide-perovskite-based heterostructure with swift interfacial charge transfer, achieved through direct partial conversion of 2D antimony oxybromide SbOBr to generate CsSbBr/SbOBr heterostructure. Compared to the traditional electrostatic self-assembly method, this approach endows the CsSbBr/SbOBr heterostructure with a tightly interconnected interface through in situ partial conversion, significantly accelerating interfacial charge transfer and thereby enhancing the separation efficiency of photogenerated carriers.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China.
The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
This study investigates the potential of boron trifluoride etherate (BF·OEt) to trigger unprecedented reactions of 2-oxoaldehydes with nitriles and amides/sulphonamides. In contrast to the mechanism in conventional reactions, the α-carbonyl group in 2-oxoaldehydes induces a cyclization pathway to be followed when reacting with nitriles, yielding 4-amidooxazoles. Additionally, reactions with weak nucleophiles produce β-keto amides/sulphonamides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!