Performing a goal-directed movement consists of a chain of complex preparatory mechanisms. Such planning especially requires integration (or binding) of various action features, a process that has been conceptualized in the "theory of event coding." Theoretical considerations and empirical research suggest that these processes are subject to developmental effects from adolescence to adulthood. The aim of the present study was to investigate age-related modulations in action feature binding processes and to shed light on underlying neurophysiological development from preadolescence to early adulthood. We examined a group of healthy participants ( = 61) between 10 and 30 yr of age, who performed a task that requires a series of bimanual response selections in an embedded paradigm. For an in-depth analysis of the underlying neural correlates, we applied EEG signal decomposition together with source localization analyses. Behavioral results across the whole group did not show binding effects in reaction times but in intraindividual response variability. From age 10 to 30 yr, there was a decrease in reaction times and reaction time variability but no age-related effect in action file binding. The latter were corroborated by Bayesian data analyses. On the brain level, the developmental effects on response selection were associated with activation modulations in the superior parietal cortex (BA7). The results show that mechanisms of action execution and speed, but not those of action feature binding, are subject to age-related changes between the age of 10 and 30 yr. Different aspects of an action need to be integrated to allow smooth unfolding of behavior. We examine developmental effects in these processes and show that mechanisms of action execution and speed, but not those of action feature binding, are subject to age-related changes between the age of 10 and 30 yr.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00681.2020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!