A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Probing the Conformational Dynamics of Affinity-Enhanced T Cell Receptor Variants upon Binding the Peptide-Bound Major Histocompatibility Complex by Hydrogen/Deuterium Exchange Mass Spectrometry. | LitMetric

Binding of the T cell receptor (TCR) to its cognate, peptide antigen-loaded major histocompatibility complex (pMHC) is a key interaction for triggering T cell activation and ultimately elimination of the target cell. Despite the importance of this interaction for cellular immunity, a comprehensive molecular understanding of TCR specificity and affinity is lacking. We conducted hydrogen/deuterium exchange mass spectrometry (HDX-MS) analyses of individual affinity-enhanced TCR variants and clinically relevant pMHC class I molecules (HLA-A*0201/NY-ESO-1) to investigate the causality between increased binding affinity and conformational dynamics in TCR-pMHC complexes. Differential HDX-MS analyses of TCR variants revealed that mutations for affinity enhancement in TCR CDRs altered the conformational response of TCR to pMHC ligation. Improved pMHC binding affinity was in general observed to correlate with greater differences in HDX upon pMHC binding in modified TCR CDR loops, thereby providing new insights into the TCR-pMHC interaction. Furthermore, a specific point mutation in the β-CDR3 loop of the NY-ESO-1 TCR associated with a substantial increase in binding affinity resulted in a substantial change in pMHC binding kinetics (i.e., very slow , revealed by the detection of EX1 HDX kinetics), thus providing experimental evidence for a slow induced-fit binding mode. We also examined the conformational impact of pMHC binding on an unrelated TRAV12-2 gene-encoded TCR directed against the immunodominant MART-1 cancer antigen restricted by HLA-A*0201. Our findings provide a molecular basis for the observed TRAV12-2 gene bias in natural CD8 T cell-based immune responses against the MART-1 antigen, with potential implications for general ligand discrimination and TCR cross-reactivity processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.1c00035DOI Listing

Publication Analysis

Top Keywords

pmhc binding
16
binding affinity
12
tcr
10
binding
9
conformational dynamics
8
cell receptor
8
major histocompatibility
8
histocompatibility complex
8
hydrogen/deuterium exchange
8
exchange mass
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!