With atmospheric CO increasing, a large amount of CO is absorbed by oceans and lakes, which changes the carbonate system and affects the survival of aquatic plants, especially microalgae. The main aim of our study was to explore the responses of Chlamydomonas reinhardtii (Chlorophyceae) to elevated CO by combined transcriptome and metabolome analysis under three different scenarios: control (CK, 400 ppm), short-term elevated CO (ST, 1000 ppm), and long-term elevated CO (LT, 1000 ppm). The transcriptomic data showed moderate changes between ST and CK. However, metabolic analysis indicated that fatty acids (FAs) and partial amino acids (AAs) were increased under ST. There was a global downregulation of genes involved in photosynthesis, glycolysis, lipid metabolism, and nitrogen metabolism but increase in the TCA cycle and β-oxidation under LT. Integrated transcriptome and metabolome analyses demonstrated that the nutritional constituents (FAs, AAs) under LT were poor compared with CK, and most genes and metabolites involved in C and N metabolism were significantly downregulated. However, the growth and photosynthesis of cells under LT increased significantly. Thus, C. reinhardtii could form a specific adaptive evolution to elevated CO, affecting future biogeochemical cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10126-021-10021-yDOI Listing

Publication Analysis

Top Keywords

chlamydomonas reinhardtii
8
transcriptome metabolome
8
elevated 1000 ppm
8
elevated
5
integrating transcriptomics
4
transcriptomics metabolomics
4
metabolomics characterize
4
characterize metabolic
4
metabolic regulation
4
regulation elevated
4

Similar Publications

The green unicellular algae contains 12-13 carbonic anhydrases (CAs). For a long time, the two closely related α-CAs of the periplasmic membrane CAH1 and CAH2 were considered to be the CAs with the highest CO hydration activity. The recombinant protein α-CA CAH3 (rCAH3) from the thylakoid lumen obtained in the present study showed more than three times higher activity compared to CAH1 and more than 11 times higher compared to previous studies with rCAH3.

View Article and Find Full Text PDF

Circadian Proteomics Reassesses the Temporal Regulation of Metabolic Rhythms by Chlamydomonas Clock.

Plant Cell Environ

January 2025

Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonipat, India.

Circadian clocks execute temporal regulation of metabolism by modulating the timely expression of genes. Clock regulation of mRNA synthesis was envisioned as the primary driver of these daily rhythms. mRNA oscillations often do not concur with the downstream protein oscillations, revealing the importance to study protein oscillations.

View Article and Find Full Text PDF

Oxygen prevents hydrogen production in Chlamydomonas (Chlamydomonas reinhardtii), in part by inhibiting the transcription of hydrogenase genes. We developed a screen for mutants showing constitutive accumulation of iron hydrogenase 1 (HYDA1) transcripts in normoxia. A reporter gene required for ciliary motility placed under the control of the HYDA1 promoter conferred motility only in hypoxia.

View Article and Find Full Text PDF

Stress on the Endoplasmic Reticulum Impairs the Photosynthetic Efficiency of Chlamydomonas.

Int J Mol Sci

December 2024

Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China.

Stress on the Endoplasmic reticulum (ER) can severely disrupt cellular function by impairing protein folding and post-translational modifications, thereby leading to the accumulation of poor-quality proteins. However, research on its impact on photosynthesis remains limited. In this study, we investigated the impact of ER stress on the photosynthetic efficiency of Chlamydomonas reinhardtii using pharmacological inducers, tunicamycin (TM) and brefeldin A (BFA), which specifically target the ER.

View Article and Find Full Text PDF

Intracellular recycling via autophagy is governed by post-translational modifications of the autophagy-related (ATG) proteins. One notable example is ATG4-dependent delipidation of ATG8, a process that plays critical but distinct roles in autophagosome formation in yeast and mammals. Here, we aim to elucidate the specific contribution of this process to autophagosome formation in species representative of evolutionarily distant green plant lineages: unicellular green alga Chlamydomonas reinhardtii, with a relatively simple set of ATG genes, and a vascular plant Arabidopsis thaliana, harboring expanded ATG gene families.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!